Pseudoprime $l$-ideals in a class of $f$-rings
HTML articles powered by AMS MathViewer
- by Suzanne Larson
- Proc. Amer. Math. Soc. 104 (1988), 685-692
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964843-2
- PDF | Request permission
Abstract:
In a commutative $f$-ring, an $l$-ideal $I$ is called pseudoprime if $ab = 0$ implies $a \in I$ or $b \in I$, and is called square dominated if for every $a \in I,|a| \leq {x^2}$ for some $x \in A$ such that ${x^2} \in I$. Several characterizations of pseudoprime $l$-ideals are given in the class of commutative semiprime $f$-rings in which minimal prime $l$-ideals are square dominated. It is shown that the hypothesis imposed on the $f$-rings, that minimal prime $l$-ideals are square dominated, cannot be omitted or generalized.References
- Eleanor R. Aron and Anthony W. Hager, Convex vector lattices and $l$-algebras, Topology Appl. 12 (1981), no.Β 1, 1β10. MR 600458, DOI 10.1016/0166-8641(81)90024-9
- Alain Bigard, Klaus Keimel, and Samuel Wolfenstein, Groupes et anneaux rΓ©ticulΓ©s, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR 0552653, DOI 10.1007/BFb0067004
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Leonard Gillman and Carl W. Kohls, Convex and pseudoprime ideals in rings of continuous functions, Math. Z. 72 (1959/60), 399β409. MR 114115, DOI 10.1007/BF01162963
- Melvin Henriksen, Semiprime ideals of $f$-rings, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp.Β 401β409. MR 0480256
- M. Henriksen and F. A. Smith, Sums of $z$-ideals and semiprime ideals, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp.Β 272β278. MR 698424
- C. B. Huijsmans, Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element, Indag. Math. 36 (1974), 132β147. Nederl. Akad. Wetensch. Proc. Ser. A 77. MR 0354635, DOI 10.1016/1385-7258(74)90004-3
- C. B. Huijsmans and B. de Pagter, Ideal theory in $f$-algebras, Trans. Amer. Math. Soc. 269 (1982), no.Β 1, 225β245. MR 637036, DOI 10.1090/S0002-9947-1982-0637036-5
- Suzanne Larson, Minimal convex extensions and intersections of primary $I$-ideals in $f$-rings, J. Algebra 123 (1989), no.Β 1, 99β110. MR 1000478, DOI 10.1016/0021-8693(89)90037-9
- Gordon Mason, $z$-ideals and prime ideals, J. Algebra 26 (1973), 280β297. MR 321915, DOI 10.1016/0021-8693(73)90024-0
- H. Subramanian, $l$-prime ideals in $f$-rings, Bull. Soc. Math. France 95 (1967), 193β203. MR 223284, DOI 10.24033/bsmf.1652
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 685-692
- MSC: Primary 06F25; Secondary 16A12
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964843-2
- MathSciNet review: 964843