Constructive reflexivity of a uniformly convex Banach space
HTML articles powered by AMS MathViewer
- by Hajime Ishihara
- Proc. Amer. Math. Soc. 104 (1988), 735-740
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964849-3
- PDF | Request permission
Abstract:
In this paper we consider a question about reflexivity of a Banach space within the framework of Bishop’s constructive mathematics and we give a partially affirmative answer to the question set by Bishop: "Is every uniformly convex Banach space reflexive?".References
- Errett Bishop, Foundations of constructive analysis, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0221878
- Errett Bishop and Douglas Bridges, Constructive analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 279, Springer-Verlag, Berlin, 1985. MR 804042, DOI 10.1007/978-3-642-61667-9
- Douglas S. Bridges, Constructive functional analysis, Research Notes in Mathematics, vol. 28, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 521982
- Douglas Bridges and Fred Richman, Varieties of constructive mathematics, London Mathematical Society Lecture Note Series, vol. 97, Cambridge University Press, Cambridge, 1987. MR 890955, DOI 10.1017/CBO9780511565663 H. Ishihara, On the constructive Hahn-Banach theorem, submitted.
- Ronald Larsen, Functional analysis: an introduction, Pure and Applied Mathematics, No. 15, Marcel Dekker, Inc., New York, 1973. MR 0461069 K. Yoshida, Functional analysis, Springer-Verlag, Berlin, 1968.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 735-740
- MSC: Primary 46R05; Secondary 03F65, 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964849-3
- MathSciNet review: 964849