Most quasidiagonal operators are not block-diagonal
HTML articles powered by AMS MathViewer
- by Domingo A. Herrero
- Proc. Amer. Math. Soc. 104 (1988), 845-851
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964866-3
- PDF | Request permission
Abstract:
The set of all block-diagonal operators is a dense first category subset of the class $(QD)$ of all quasidiagonal operators. On the other hand, the subset of all irreducible quasidiagonal operators with thin spectra, that are similar to block-diagonal ones, includes a ${G_\delta }$-dense subset of $(QD)$.References
- C. K. Fong, Most normal operators are diagonal, Proc. Amer. Math. Soc. 99 (1987), no. 4, 671–672. MR 877037, DOI 10.1090/S0002-9939-1987-0877037-5
- P. R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215–223. MR 231233
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- Domingo A. Herrero, Limit values of multiplicative Stieltjes integrals, Rev. Un. Mat. Argentina 24 (1968), 59–64 (Spanish). MR 253072 —, Approximation of Hilbert space operators. Volume I, Research Notes in Math., vol. 72, Pitman, Boston, Mass., London and Melbourne, 1982.
- Domingo A. Herrero, The diagonal entries in the formula “quasitriangular $-$ compact $=$ triangular” and restrictions of quasitriangularity, Trans. Amer. Math. Soc. 298 (1986), no. 1, 1–42. MR 857432, DOI 10.1090/S0002-9947-1986-0857432-4
- Domingo A. Herrero, Most quasitriangular operators are triangular, most biquasitriangular operators are bitriangular, J. Operator Theory 20 (1988), no. 2, 251–267. MR 1004123
- Glenn R. Luecke, A note on quasidiagonal and quasitriangular operators, Pacific J. Math. 56 (1975), no. 1, 179–185. MR 374963
- V. A. Prigorskiĭ, On similarity of chains of projections in Hilbert space, Mat. Issled. 5 (1970), no. vyp. 3 (17), 207–209 (Russian). MR 0283593
- Heydar Radjavi and Peter Rosenthal, The set of irreducible operators is dense, Proc. Amer. Math. Soc. 21 (1969), 256. MR 236748, DOI 10.1090/S0002-9939-1969-0236748-4
- Dan Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371–378. MR 343082
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 845-851
- MSC: Primary 47A65; Secondary 47A66
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964866-3
- MathSciNet review: 964866