THE FIRST DIRICHLET EIGENVALUE AND RADIUS OF A GEODESIC BALL

SEUNG-JIN BANG

(Communicated by David G. Ebin)

ABSTRACT. We give certain relation between the first Dirichlet eigenvalue and radius of a geodesic ball in a connected, compact n-dimensional Riemannian globally symmetric space of rank one.

Let \(M \) be a connected, compact n-dimensional Riemannian globally symmetric space of rank one, \(L \) the diameter of \(M \), \(A(r) \) the surface area of a sphere with radius \(r \) (0 < \(r < L \)), in \(M \), \(\Delta \) the Laplace-Beltrami operator on \(M \), and \(B(r) \) denote a geodesic ball with radius \(r \), in \(M \).

Consider the following Dirichlet eigenvalue problem:

\[\Delta f + \lambda f = 0 \text{ in } B(r), \quad f = 0 \text{ on } \partial B(r). \]

Let \(\lambda = \lambda(M, n, r) \) be the first Dirichlet eigenvalue of \(B(r) \). By domain monotonicity of Dirichlet eigenvalues, for fixed \(n \), \(\lambda(M, n, r) : (0, L) \rightarrow (0, \infty) \) is strictly decreasing. For our convenience, we introduce \(r = r(M, n, \lambda) \) which is the inverse function of \(\lambda(M, n, r) \).

THEOREM. If \(\lambda(M, n, r) = 2k\alpha(n + 2\beta + 2k) \) (\(k = 1, 2, 3, \ldots \)), then \(r = r(M, n, \lambda) \) is the first positive zero of

\[
T(t) = 1 + \sum_{j=1}^{k} (-\sin^2 \sqrt{\alpha t})^j \prod_{m=0}^{j-1} \frac{(k - m)(n + 2\beta + 2k + 2m)}{(m + 1)(n + 2m)},
\]

where \(\alpha \) and \(\beta \) are constants determined by \(M \). (See Table 1.) In particular,

\[
\sqrt{ar}(M, n, 2\alpha(n + 2\beta + 2)) = \arcsin \sqrt{n/(n + 2\beta + 2)},
\]

\[
\sqrt{ar}(M, n, 4\alpha(n + 2\beta + 4)) = \arcsin \sqrt{(n + 2 - \sqrt{(4\beta + 8)(n + 2)/(n + 2\beta + 4))}/(n + 2\beta + 6)}.
\]

PROOF OF THE THEOREM. It is well known that \(M \) is isometric to one of the following spaces: \(S^m(\alpha) \) (the sphere with constant curvature \(\alpha \)), \(P^m(\alpha) \) (the real projective space with constant curvature \(\alpha \)), \(CP^m(\alpha) \) (the complex projective space with constant holomorphic sectional curvature \(4\alpha \)), \(QP^m(\alpha) \) (the quaternionic space with maximum sectional curvature \(4\alpha \)), and \(Cay P^2(\alpha) \) (the Cayley plane with maximum sectional curvature \(4\alpha \)), and also well known that

Received by the editors June 3, 1987 and, in revised form, December 20, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C35.

Key words and phrases. First Dirichlet eigenvalue, radius, geodesic ball, the Gauss hypergeometric function.
$A(r) = C(\sin \sqrt{\alpha}r)^{n-1}(\cos \sqrt{\alpha}r)^{2\beta+1}$ for some constant C determined by M. (See [3].)

<table>
<thead>
<tr>
<th>M</th>
<th>L</th>
<th>β</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^m(\alpha)$</td>
<td>$\pi/\sqrt{\alpha}$</td>
<td>$-1/2$</td>
<td>m</td>
</tr>
<tr>
<td>$P^m(\alpha)$</td>
<td>$\pi/2\sqrt{\alpha}$</td>
<td>$-1/2$</td>
<td>m</td>
</tr>
<tr>
<td>$C P^m(\alpha)$</td>
<td>$\pi/2\sqrt{\alpha}$</td>
<td>0</td>
<td>$2m$</td>
</tr>
<tr>
<td>$Q P^m(\alpha)$</td>
<td>$\pi/2\sqrt{\alpha}$</td>
<td>1</td>
<td>$4m$</td>
</tr>
<tr>
<td>Cay $P^2(\alpha)$</td>
<td>$\pi/2\sqrt{\alpha}$</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

| TABLE 1 |

Note that we may take $\alpha = 1$. Since M is two-point homogeneous, the eigenfunction of $\lambda(M, n, r)$ is radial. In geodesic polar coordinates on M, the radial part of Δ is

$$\Delta_r = \frac{d^2}{dt^2} + \left(\frac{dA}{dt}/A(t)\right) \frac{dt}{dt} \quad (0 < t < L).$$

Now the eigenfunction $T(t)$ of $\lambda(M, n, r)$ satisfies

$$T'' + [(n - 1) \cot t - (2\beta + 1) \tan t]T'(t) + \lambda T(t) = 0.$$

Solving ODE we have

$$T(t) = F(a, b; n/2; \sin^2 t) \quad (t \leq r < \pi/2),$$

where F is the Gauss hypergeometric function, $a = (n + 2\beta + \sqrt{(n + 2\beta)^2 + 4\lambda})/4$, and $b = (n + 2\beta - \sqrt{(n + 2\beta)^2 + 4\lambda})/4$. Finally, we obtain

$$T(t) = 1 + \sum_{j=1}^{\infty} (\sin^2 t/2)^j \prod_{m=1}^{j} \frac{-\lambda + 2(m - 1)(n + 2\beta + 2m - 2)}{m(n + 2m - 2)} \quad (t \leq r < \pi/2).$$

Since $T(t)$ does not vanish in $B(r)$, $r = r(M, n, \lambda)$ is the first positive zero of $T(t)$. This completes the proof. \(\square\)

Remark. When $M = S^m(\alpha)$ or $P^m(\alpha)$, using the properties of the Gauss hypergeometric functions, we have many results of different type which are not available for other spaces $C P^m(\alpha)$, $Q P^m(\alpha)$ and Cay $P^2(\alpha)$.

References

Department of Mathematics, Seoul National University, Seoul 151, Korea

Current address: Department of Mathematics, Ajou University, Suwon, Kyunggi-Do, 440-749 Korea