An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities
HTML articles powered by AMS MathViewer
- by Michel Talagrand
- Proc. Amer. Math. Soc. 104 (1988), 905-909
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964871-7
- PDF | Request permission
Abstract:
For vectors ${x_1}, \ldots , {x_n}$ in a Banach space, we bound the deviation of $\left \| {\sum \nolimits _{i \leq n} {{\varepsilon _i}{x_i}} } \right \|$ from its median.References
- D. Amir and V. D. Milman, Unconditional and symmetric sets in $n$-dimensional normed spaces, Israel J. Math. 37 (1980), no. 1-2, 3–20. MR 599298, DOI 10.1007/BF02762864
- Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. MR 399402, DOI 10.1007/BF01425510
- L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory 1 (1966), 385–393. MR 200192
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 905-909
- MSC: Primary 60E15; Secondary 60B11
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964871-7
- MathSciNet review: 964871