Analyticity of homology classes
HTML articles powered by AMS MathViewer
- by Alberto Tognoli
- Proc. Amer. Math. Soc. 104 (1988), 920-922
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964874-2
- PDF | Request permission
Abstract:
Let $W$ be a real analytic manifold and $\{ \alpha \} \in {H_p}(W,{Z_2})$. We shall say that $\{ \alpha \}$ is analytic if there exists a compact analytic subset $S$ of $W$, such that: $\{ \alpha \}= {}$ fundamental class of $S\}$. The purpose of this short paper is to prove Theorem 1. Let $W$ be a paracompact real analytic manifold; then any homology class $\{ \alpha \} \in {H_p}(W,{Z_2})$ is analytic. We remember that a similar result does not hold in the real algebraic case (see [1]).References
- R. Benedetti and M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53 (1984), no. 2, 143–151. MR 766294
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518, DOI 10.1007/978-1-4615-7904-5 A. Tognoli, Algebraic approximation of manifolds and spaces, Sem. Bourbaki 548 (1979-80).
- Riccardo Benedetti and Alberto Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) 104 (1980), no. 1, 89–112 (English, with French summary). MR 560747
- Armand Borel and André Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513 (French). MR 149503, DOI 10.24033/bsmf.1571
- Aldo Andreotti and Per Holm, Quasianalytic and parametric spaces, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 13–97. MR 0589903
- A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 167–185. MR 396571
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
- Alberto Tognoli, Algebraic geometry and Nash functions, Institutiones Mathematicae [Mathematical Methods], III, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR 556239
- Ludger Kaup and Burchard Kaup, Holomorphic functions of several variables, De Gruyter Studies in Mathematics, vol. 3, Walter de Gruyter & Co., Berlin, 1983. An introduction to the fundamental theory; With the assistance of Gottfried Barthel; Translated from the German by Michael Bridgland. MR 716497, DOI 10.1515/9783110838350
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 920-922
- MSC: Primary 57R95; Secondary 32C05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964874-2
- MathSciNet review: 964874