Linear spaces, absolute retracts, and the compact extension property
HTML articles powered by AMS MathViewer
- by Jos van der Bijl and Jan van Mill
- Proc. Amer. Math. Soc. 104 (1988), 942-952
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964878-X
- PDF | Request permission
Abstract:
We formulate a "partial realization" property and prove that this property is equivalent to the compact extension property. In addition, we prove that a linear space $L$ has the compact extension property if and only if $L$ is admissible if and only if $L$ has the $\sigma$-compact extension property. This implies that for a $\sigma$-compact linear space $L$, the following statements are equivalent: (1) $L$ is an absolute retract, (2) $L$ has the compact extension property, and (3) $L$ is admissible. Finally, we prove that if there exists a linear space which is not an absolute retract then there is an admissible linear space which is not an absolute retract.References
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- D. W. Curtis and J. van Mill, The compact extension property, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 115–119. MR 952598
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116 M. Eidelheit and S. Mazur, Eine Bemerkung über die Räume von Typus (F), Studia Mat. 7 (1938), 159-161.
- William E. Haver, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280–284. MR 331311, DOI 10.1090/S0002-9939-1973-0331311-X
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- Victor Klee, Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281–285. MR 131149, DOI 10.1007/BF01360762
- Victor Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296. MR 131150, DOI 10.1007/BF01360763
- C. Kuratowski, Sur quelques problèmes topologiques concernant le prolongement des fonctions continues, Colloq. Math. 2 (1951), 186–191 (1952) (French). MR 48791, DOI 10.4064/cm-2-3-4-186-191
- Jan van Mill, Another counterexample in ANR theory, Proc. Amer. Math. Soc. 97 (1986), no. 1, 136–138. MR 831402, DOI 10.1090/S0002-9939-1986-0831402-X
- Jan van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), no. 1, 173–180. MR 897091, DOI 10.1090/S0002-9939-1987-0897091-4
- Mitio Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497–511. MR 42697, DOI 10.2307/2372304
- Roman Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, Proc. Amer. Math. Soc. 90 (1984), no. 3, 450–454. MR 728367, DOI 10.1090/S0002-9939-1984-0728367-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 942-952
- MSC: Primary 57N17; Secondary 54C20, 54F40, 55M15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964878-X
- MathSciNet review: 964878