$d$-final continua
HTML articles powered by AMS MathViewer
- by John Isbell
- Proc. Amer. Math. Soc. 104 (1988), 953-964
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964879-1
- PDF | Request permission
Abstract:
The Hilbert cube is known to be an irreducible quotient of every perfect metric space. Its irreducible quotients are identified: all nondegenerate Peano continua no open set in which is homeomorphic with $R$. In compact metric spaces, every irreducible surjection $X \to Y$ embeds a dense ${G_\delta }$ subset of $X$ in $Y$. The Peano continua I which are strongly initial, every irreducible map from a Peano continuum to I being a homeomorphism, are identified: the dendrites the closure of whose end points is zero-dimensional.References
- R. H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), 1101–1110. MR 35429, DOI 10.1090/S0002-9904-1949-09334-5
- H. C. Enos, Coarse uniformities on the rationals, Proc. Amer. Math. Soc. 34 (1972), 623–626. MR 295283, DOI 10.1090/S0002-9939-1972-0295283-8
- J. R. Isbell, Uniform neighborhood retracts, Pacific J. Math. 11 (1961), 609–648. MR 141074, DOI 10.2140/pjm.1961.11.609
- John R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5–32. MR 358725, DOI 10.7146/math.scand.a-11409
- John R. Isbell, Function spaces and adjoints, Math. Scand. 36 (1975), no. 2, 317–339. MR 405340, DOI 10.7146/math.scand.a-11581
- Peter T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- Peter T. Johnstone, Factorization theorems for geometric morphisms. II, Categorical aspects of topology and analysis (Ottawa, Ont., 1980) Lecture Notes in Math., vol. 915, Springer, Berlin-New York, 1982, pp. 216–233. MR 659894 C. Kuratowski, Topologie. II, Monogr. Mat., torn 21, PWN, Warsaw, 1952.
- A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1960/61), 301–319. MR 133806, DOI 10.4064/fm-49-3-301-319 K. Menger, Kurventheorie, Teubner, Leipzig, 1932.
- Edwin E. Moise, Grille decomposition and convexification theorems for compact metric locally connected continua, Bull. Amer. Math. Soc. 55 (1949), 1111–1121. MR 35430, DOI 10.1090/S0002-9904-1949-09336-9
- S. Mrówka, Continuous functions on countable subspaces, Portugal. Math. 29 (1970), 177–180. MR 293605
- E. G. Sklyarenko, Perfect bicompact extensions, Soviet Math. Dokl. 2 (1961), 238–240. MR 0121777
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 953-964
- MSC: Primary 54F25; Secondary 54D35, 54F05, 54F50
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964879-1
- MathSciNet review: 964879