Small spaces which “generate” large spaces
HTML articles powered by AMS MathViewer
- by W. W. Comfort
- Proc. Amer. Math. Soc. 104 (1988), 973-980
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964881-X
- PDF | Request permission
Abstract:
Let $\underline S$ denote the class of Tychonoff spaces. For $X \in \underline S$ and $\underline C \subseteq \underline S$, we say that $X$ generates large $\underline C$-spaces if for every cardinal $\alpha$ there is $Y \in \underline S$ such that $Y \in \underline C, X \subseteq Y$, and every $Z \in \underline {C}$ with $X \subseteq Z \subseteq Y$ satisfies $|Z| > \alpha$. For classes $\underline C$ which satisfy certain mild and natural conditions, we show for each $X \in \underline S$ that $X$ generates large $\underline C$-spaces iff there is no weakly free $\underline C$-space over $X$—i.e., no space $Y$ such that $X \subseteq Y \subseteq C$ and every continuous $f:X \to Z \in \underline C$ extends to a continuous function $\bar f:Y \to Z$. Among the classes $\underline C \subseteq \underline S$ which satisfy these conditions for every $X \notin \underline C$ are the class of pseudocompact Tychonoff spaces and the class of almost compact (= absolutely ${C^*}$-embedded) Tychonoff spaces.References
- W. W. Comfort and Jan van Mill, On the existence of free topological groups, Topology Appl. 29 (1988), no. 3, 245–265. MR 953957, DOI 10.1016/0166-8641(88)90024-7
- W. W. Comfort and S. Negrepontis, Continuous pseudometrics, Lecture Notes in Pure and Applied Mathematics, Vol. 14, Marcel Dekker, Inc., New York, 1975. MR 0410618
- R. Engelking and S. Mrówka, On $E$-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 429–436. MR 0097042
- S. P. Franklin, On epi-reflective hulls, General Topology and Appl. 1 (1971), no. 1, 29–31. MR 286071, DOI 10.1016/0016-660X(71)90107-3 Peter J. Freyd, Functor theory, Doctoral dissertation, Princeton University, 1960.
- Peter Freyd, Abelian categories. An introduction to the theory of functors, Harper’s Series in Modern Mathematics, Harper & Row, Publishers, New York, 1964. MR 0166240
- Zdeněk Frolík, The topological product of two pseudocompact spaces, Czechoslovak Math. J. 10(85) (1960), 339–349 (English, with Russian summary). MR 116304, DOI 10.21136/CMJ.1960.100418
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4
- Horst Herrlich, ${\mathfrak {E}}$-kompakte Räume, Math. Z. 96 (1967), 228–255 (German). MR 205218, DOI 10.1007/BF01124082
- H. Herrlich and J. van der Slot, Properties which are closely related to compactness, Indag. Math. 29 (1967), 524–529. Nederl. Akad. Wetensch. Proc. Ser. A 70. MR 0222848, DOI 10.1016/S1385-7258(67)50068-9
- Edwin Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45–99. MR 26239, DOI 10.1090/S0002-9947-1948-0026239-9
- J. F. Kennison, Reflective functors in general topology and elsewhere, Trans. Amer. Math. Soc. 118 (1965), 303–315. MR 174611, DOI 10.1090/S0002-9947-1965-0174611-9
- J. van der Slot, Universal topological properties, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1966 (1966), no. ZW-011, 9. MR 242123
- R. Grant Woods, Topological extension properties, Trans. Amer. Math. Soc. 210 (1975), 365–385. MR 375238, DOI 10.1090/S0002-9947-1975-0375238-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 973-980
- MSC: Primary 54C20; Secondary 22A05, 54C25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964881-X
- MathSciNet review: 964881