Characterizing $\Omega$-stability for flows in the plane
HTML articles powered by AMS MathViewer
- by Maria Lúcia Alvarenga Peixoto
- Proc. Amer. Math. Soc. 104 (1988), 981-984
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964882-1
- PDF | Request permission
Abstract:
In this paper, the ${C^r}\Omega$-stability for flows in the plane is characterized using the notion called "generalized recurrence" by J. Auslander [1].References
- Joseph Auslander, Generalized recurrence in dynamical systems, Contributions to Differential Equations 3 (1964), 65–74. MR 162238
- Fopke Klok, $\Omega$-stability of plane vector fields, Bol. Soc. Brasil. Mat. 12 (1981), no. 1, 21–27. MR 671472, DOI 10.1007/BF02588318
- Janina Kotus, MichałKrych, and Zbigniew Nitecki, Global structural stability of flows on open surfaces, Mem. Amer. Math. Soc. 37 (1982), no. 261, v+108. MR 653093, DOI 10.1090/memo/0261 J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, Berlin and New York, 1983.
- Maria Lúcia Alvarenga Peixoto, The closing lemma for generalized recurrence in the plane, Trans. Amer. Math. Soc. 308 (1988), no. 1, 143–158. MR 946436, DOI 10.1090/S0002-9947-1988-0946436-0
- M. M. Peixoto and C. C. Pugh, Structurally stable systems on open manifolds are never dense, Ann. of Math. (2) 87 (1968), 423–430. MR 224936, DOI 10.2307/1970713
- J. Sotomayor, Generic one-parameter families of vector fields on two-dimensional manifolds, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 5–46. MR 339279, DOI 10.1007/BF02684365
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 981-984
- MSC: Primary 58F10; Secondary 58F25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0964882-1
- MathSciNet review: 964882