A REAL VALUED HOMOMORPHISM ON ALGEBRAS OF DIFFERENTIABLE FUNCTIONS

JUAN ARIAS-DE-REYNA

(Communicated by R. Daniel Mauldin)

ABSTRACT. In this paper we prove that, for every homomorphism \(A \) on \(C^k(E) \), there exists \(x \in E \) such that \(A(f) = f(x) \) for \(f \in C^k(E) \). Here \(C^k(E) \) \((k = 1, 2, \ldots, \infty)\) denotes the algebra of all \(k \)-times differentiable real functions on a real and separable Banach space \(E \).

Introduction. Let \(C^k(E) \) \((k = 1, 2, \ldots, \infty)\) be the algebra of all \(k \)-times differentiable function \(f: E \to \mathbb{R} \) defined on a real Banach space \(E \). Since \(C^k(E) \) is an algebra of functions it makes sense to ask if, to each nonzero homomorphism \(A: C^k(E) \to \mathbb{R} \), there corresponds \(x \in E \) such that \(A(f) = f(x) \) for all \(f \in C^k(E) \), in other words, if \(A \) is an evaluation.

If \(k = 0 \), the answer is affirmative if and only if \(E \) is realcompact. It turns out, since \(E \) is a metric space, that it is realcompact if and only if \(\text{card}(E) \) is nonmeasurable (cf. Gillman and Jerison [1, pp. 226–232]).

On the other hand Jaramillo [4] defining two topologies \(\tau^k_\omega \) and \(\tau^k_\sigma \) on \(C^k(E) \), have proved that, if \(\tau^k_\omega = \tau^k_\sigma \), then every homomorphism on \(C^k(E) \) is an evaluation. They have also proved that \(\tau^k_\omega = \tau^k_\sigma \) if \(E \) has nonmeasurable cardinal and \(E \) admits \(B^k \) partitions of unity. To see what kind of Banach spaces admits \(B^k \) partitions of unity, see Wells [6] and Sundaresan and Swaminatan [5].

In this paper we generalize the result of Jaramillo to all separable Banach spaces. We give a direct proof without using any topology on \(C^k(E) \) nor partitions of unity on \(E \).

1. Associated filter to a real homomorphism. In the following, \(A: C^k(E) \to \mathbb{R} \) denotes a nonzero homomorphism. For \(\alpha \in \mathbb{R} \), let \(\hat{\alpha} \) be the constant function that associates the value \(\alpha \) to each element \(x \in E \). We claim that \(A(\hat{\alpha}) = \alpha \) for every \(\alpha \in \mathbb{R} \). Indeed, \(A(\hat{1}) \neq 0 \) because \(A \neq 0 \). Then \(B: \mathbb{R} \to \mathbb{R} \) defined by \(B(\alpha) = A(\hat{\alpha}) \) is a nonzero homomorphism from \(\mathbb{R} \) into \(\mathbb{R} \). Therefore \(B \) is the identity homomorphism, that is \(A(\hat{\alpha}) = \alpha \) for every \(\alpha \in \mathbb{R} \).

Proposition 1. Let \(A: C^k(E) \to \mathbb{R} \) be a nonzero homomorphism. For every \(f \in C^k(E) \), the set \(\{x \in E: A(f) = f(x)\} \) is nonempty.

Proof. Suppose \(\{x \in E: A(f) = f(x)\} = \emptyset \). Then \(f - A(f) \) is a real function, which does not take the value 0. So \((f - A(f))^{-1} \in C^k(E) \) and we see that

\[
1 = A(\hat{1}) = A((f - A(f))(f - A(f))^{-1}) = A(f - A(f))A((f - A(f))^{-1})
\]

which contradicts \(A(f - A(f)) = A(f) - A(f) = 0 \).

Received by the editors October 6, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 46J15, 46J20; Secondary 41A65.

©1988 American Mathematical Society
0002-9939/88 $1.00 + .25 per page
A REAL VALUED HOMOMORPHISM

PROPOSITION 2. Let \(A : C^k(E) \to \mathbb{R} \) be a nonzero homomorphism. Denote by \(S(f_1, \ldots, f_n) \) the set \(\{ x \in E : A(f_i) = f_i(x), i = 1, 2, \ldots, n \} \). The collection \(\mathcal{S} \) of all the sets \(S(f_1, \ldots, f_n) \) where \(f_1, \ldots, f_n \in C^k(E) \) is a filter basis on \(E \).

PROOF. Since \(S(f_1, \ldots, f_n) \cap S(g_1, \ldots, g_m) = S(f_1, \ldots, f_n, g_1, \ldots, g_m) \), it suffices to prove that \(S(f_1, \ldots, f_n) \neq \emptyset \) for every \(f_1, \ldots, f_n \in C^k(E) \).

Consider the function \(g = \sum_{i=1}^n (f_i - A(f_i))^2 \in C^k(E) \). By Proposition 1, there exists \(x \in E \) such that \(A(g) = g(x) \). From the definition of \(g \) we get \(A(g) = 0 \), so that \(\sum (f_i(x) - A(f_i))^2 = 0 \) which forces \(f_i(x) = A(f_i) \) for every \(i = 1, 2, \ldots, n \).

DEFINITION 3. Let \(A : C^k(E) \to \mathbb{R} \) be a nonzero homomorphism. We will say that the filter \(\mathcal{F} \) generated by the filter basis \(\mathcal{S} \), from Proposition 2, is the filter associated to \(A \).

PROPOSITION 4. Let \(A : C^k(\mathbb{R}^n) \to \mathbb{R} \) be a nonzero homomorphism. Then there exists \(x \in \mathbb{R}^n \) such that for every \(f \in C^k(\mathbb{R}^n) \), \(A(f) = f(x) \).

PROOF. Let \(f \in C^k(\mathbb{R}^n) \) be the function defined by \(f(x_1, \ldots, x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 \). The filter \(\mathcal{F} \) associated to \(A \) contains the set \(K = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : A(f) = x_1^2 + x_2^2 + \cdots + x_n^2 \} \). Since \(K \) is compact, there exists \(x \in \mathbb{R}^n \) adherent to \(\mathcal{F} \).

For every \(g \in C^k(\mathbb{R}^n) \) we see that \(x \in \{ y \in \mathbb{R}^n : A(g) = g(y) \} = \{ y \in \mathbb{R}^n : A(g) = g(y) \} \). Hence \(A(g) = g(x) \).

2. Main theorems. Now we construct some differentiable real functions on a Banach space, which we will use later.

LEMMA 5. Let \(E \) be a real Banach space, \((x_n^*) \) a sequence in the dual space \(E^* \) of \(E \) which tends to zero in the weak* topology, \(\delta > 0 \) and \(\varphi \in C^\infty(\mathbb{R}) \) such that \(\varphi(x) = 0 \) if \(|x| < \delta \). Then we can define \(\phi(x) = \sum_{n=1}^\infty \varphi(x_n^*(x)) \) and we have \(\phi \in C^\infty(E) \).

PROOF. By hypothesis \(x_n^* \) tends to zero in the weak* topology. It follows that \(\lim x_n^*(x) = 0 \) for every \(x \in E \). Moreover \(\varphi(t) = 0 \) if \(|t| < \delta \), so that \(\sum_{n=1}^\infty \varphi(x_n^*(x)) \) is finite and we can define \(\phi(x) \).

Now we will prove that, to each \(a \in E \), there correspond a neighborhood \(V \) of \(a \) and a natural number \(N \) such that, for every \(x \in V \), \(\phi(x) = \sum_{n=1}^N \varphi(x_n^*(x)) \). That is, in the neighborhood \(V \) of \(a \), we have \(\phi = \psi \circ J \) where \(J : E \to \mathbb{R}^N \) is the continuous linear map defined by \(J(x) = (x_1^*(x), \ldots, x_N^*(x)) \) and \(\psi : \mathbb{R}^N \to \mathbb{R} \) is defined in the form \(\psi(t_1, \ldots, t_N) = \sum_{i=1}^N \varphi(t_i) \). In other words, we will prove that \(\phi \) is a composition of infinitely differentiable functions. Therefore \(\phi \) is infinitely differentiable too.

Suppose \(a \in E \). We know that \(\lim x_n^*(a) = 0 \). Then there exists \(N \) such that \(n > N \) implies \(|x_n^*(a)| < \delta/2 \). Moreover, as \(x_n^* \to 0 \) in the weak* topology, there exists \(M \) such that \(\|x_n^*\| \leq M \) for every \(n \). Let \(V \) be the ball of center \(a \) and radius \(\delta/2M \). If \(x \in V \), \(\|x - a\| < \delta/2M \). So for every \(n > N \) we have \(|x_n^*(x) - x_n^*(a)| < \delta/2 + \delta/2 = \delta \), and \(\varphi(x_n^*(x)) = 0 \). Thus \(\phi(x) = \sum_{n=1}^N \varphi(x_n^*(x)) \).

PROPOSITION 6. Let \(E \) be a real and separable Banach space and \(A : C^k(E) \to \mathbb{R} \) a nonzero homomorphism. There exists \(a \in E \) such that, for every differentiable
function \(\varphi \) of the form \(\psi \circ J \), where \(\psi \in C^\infty(\mathbb{R}^n) \) and \(J : E \to \mathbb{R}^n \) is a continuous linear map, we have \(A(\varphi) = \varphi(a) \).

Proof. Let \(u : E^* \to \mathbb{R} \) be the linear form defined by \(u(x^*) = A(x^*) \). First we will show that there exists \(a \in E \) such that, for every \(x^* \), \(u(x^*) = x^*(a) \). It is the same to prove that \(u \) is weak* continuous. Since \(E \) is complete and separable, we apply a consequence of Grothendieck’s completeness theorem (cf. Horvath [2, p. 253]) and it remains to prove that, if \(x_n^* \to 0 \) in the weak* topology, then \(u(x_n^*) \to 0 \).

First notice that, if \(x_1^*, \ldots, x_n^* \in E^* \) and \(\psi \in C^\infty(\mathbb{R}^n) \), then \(A(\psi(x_1^*(x), \ldots, x_n^*(x))) = \psi(u(x_1^*), \ldots, u(x_n^*)) \). Indeed, let \(J : E \to \mathbb{R}^n \) be the continuous linear map defined by \(J(x) = (x_1^*(x), \ldots, x_n^*(x)) \). There exists an homomorphism of algebras \(B : C^\infty(\mathbb{R}^n) \to C^\infty(E) \) that applies \(\psi \) into \(\psi \circ J \). The composition \(A \circ B : C^\infty(\mathbb{R}^n) \to \mathbb{R} \) is a nonzero homomorphism. Thus by Proposition 4, there exists \((\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n \) such that \(A(\psi) = \varphi(\alpha_1, \ldots, \alpha_n) \), that is \(A(\psi \circ J) = \varphi(\alpha_1, \ldots, \alpha_n) \) for every \(\psi \in C^\infty(\mathbb{R}^n) \). Now if we consider the function \(\psi_i \) defined by \(\psi_i(t_1, \ldots, t_n) = t_i \) we obtain \(A(x_i^*) = \alpha_i = u(x_i^*) \). Therefore

\[
A(\psi(x_1^*(x), \ldots, x_n^*(x))) = A(\psi \circ J) = \psi(u(x_1^*), \ldots, u(x_n^*)).
\]

Now let \((x_n^*) \) be a sequence in \(E^* \) which tends to zero in the weak* topology. We have to prove that \(\lim u(x_n^*) = 0 \).

Fix \(\delta > 0 \). Choose \(\varphi \in C^\infty(\mathbb{R}) \), \(\varphi(t) \geq 0 \), \(\varphi(t) = 0 \) if \(|t| < \delta \) and \(\varphi(t) = 1 \) if \(|t| > 2\delta \). By Lemma 5, we can consider the function \(\varphi(x) = \sum_{n=1}^{\infty} \varphi(x_n^*(x)) \in C^\infty(E) \). Now for every natural number \(N \), we define the function \(g_N(x) = \varphi(x) - \sum_{n=1}^{N} \varphi(x_n^*(x)) \). Since \(g_N(x) \geq 0 \) Proposition 1 can be applied. It shows that there exists \(\bar{x} \) such that \(A(g_N) = g_N(\bar{x}) \geq 0 \). Now (1) leads to

\[
A(\varphi) \geq A \left(\sum_{n=1}^{N} \varphi(x_n^*(x)) \right) = \sum_{n=1}^{N} \varphi(u(x_n^*)).
\]

This result being valid for every \(N \) and observing that \(\varphi(u(x_n^*)) \geq 0 \), we conclude that the series \(\sum_{n=1}^{\infty} \varphi(u(x_n^*)) \) converges absolutely. Hence we have \(|u(x_n^*)| < 2\delta \) except for a finite number of indices. Thus the linear form \(u \) is weak* continuous, so that there exists \(a \in E \) such that \(u(x^*) = x^*(a) \) for every \(x^* \in E^* \).

Finally if \(\varphi = \psi \circ J \) we obtain, by (1),

\[
A(\varphi) = \psi(u(x_1^*), \ldots, u(x_n^*)) = \psi(x_1^*(a), \ldots, x_n^*(a)) = \varphi(a)
\]

and the proof is complete.

Proposition 7. Let \(E \) be a real Banach space, \((x_n^*) \) a sequence in the dual space \(E^* \) and \(\varphi \in C^\infty(\mathbb{R}) \) such that \(\varphi(t) = 1 \) if \(|t| > 1 \). Then there exists a sequence \((\alpha_n) \) of positive real numbers so that \(\varphi(x) = \sum_{n=1}^{\infty} \alpha_n \varphi(x_n^*(x)) \) defines a function \(\varphi \in C^\infty(E) \).

Proof. Fix \(x^* \in E^* \) and denote by \((x^*)^n \) the multilinear map defined by \((x^*)^n(x_1, \ldots, x_n) = x^*(x_1) x^*(x_2) \cdots x^*(x_n) \in \mathcal{L}(E, \ldots, E; \mathbb{R}) \). We see that the \(n \)th derivative of \(\varphi \circ x^* \) is given by \(D^n(\varphi \circ x^*)(x) = D^n(\varphi(x^*(x)))(x^*)^n \).

Since \(\varphi(t) = 1 \) if \(|t| > 1 \) we obtain that there exist constants \(M_n \) such that \(|D^n(\varphi(x^*(x)))| \leq M_n \). Hence

\[
\|D^n(\varphi \circ x^*)(x)\|_{\mathcal{L}(E, \ldots, E; \mathbb{R})} \leq M_n \|x^*\|^n.
\]
In order to prove that the series $\sum \alpha_n \varphi(x_n(x))$ converges, it suffices to choose the sequence (α_n) such that $\sum |\alpha_n| M_n < +\infty$. Moreover the function ϕ is differentiable if we choose the sequence (α_n) such that series $\sum |\alpha_n| M_1 \|x_n\|$ converges, and ϕ is of class C^∞ if for every natural number p the series $\sum |\alpha_n| M_p \|x_n\|^p$ converges. But it is obvious that we can choose the sequence (α_n) verifying these conditions, which completes the proof.

THEOREM 8. Let E be a real and separable Banach space and $A: C^k(E) \to \mathbb{R}$ a nonzero homomorphism. Then there exists a point $a \in E$ such that $A(\varphi) = \varphi(a)$ for every $\varphi \in C^k(E)$.

PROOF. We know, by Proposition 6, that there exists $a \in E$ such that, if $\varphi \in C^\infty(E)$ is of the form $\varphi = \psi \circ J$, where $\psi \in C^\infty(\mathbb{R}^n)$ and $J: E \to \mathbb{R}^n$ is a continuous linear map, then $A(\varphi) = \varphi(a)$.

Since E is separable, there exists a sequence (x_n^*) in the dual space such that $\|x\| = \sup |x^*(x)|$ for every $x \in E$. To prove this, let (a_n) be a dense sequence in E and choose x^* in the dual space such that $\|x^*\| = 1$ and $a_n(x^*) = |a_n|$. Now $|x_n^*(x)| \leq \|x\|$ for every n and, on the other hand, to each $\varepsilon > 0$, there corresponds a_n such that $\|x - a_n\| < \varepsilon$. Thus we have $\|x\| \leq \|a_n\| + \|x - a_n\| \leq \varepsilon + x_n^*(a_n) \leq 2\varepsilon + |x_n^*(x)|$.

Now let $f \in C^k(E)$. As f is continuous in a, given $\varepsilon > 0$, there exists $\delta > 0$ such that $\|x - a\| \leq \delta$ implies $|f(x) - f(a)| < \varepsilon$.

Next we choose a function $\varphi \in C^\infty(\mathbb{R})$ such that $\varphi(t) \neq 0$ if $|t| > \delta$, $\varphi(t) = 0$ if $|t| \leq \delta$, $\varphi(t) = 1$ if $|t| > 1$, and $\varphi(t) \geq 0$ for every $t \in \mathbb{R}$. Now Proposition 7 can be applied. It shows that there exists a sequence (α_n) of positive real numbers such that the function $\psi(x) = \sum_{n=1}^{\infty} \alpha_n \varphi(x_n^*(x - a)) \in C^\infty(E)$. In the same way the function $\phi(x) = \sum_{n=1}^{\infty} (\alpha_n/n) \varphi(x_n^*(x - a)) \in C^\infty(E)$.

Observe that, for $\|x - a\| \leq \delta$, $\phi(x) = 0$ since $|x_n^*(x - a)| < \delta$. Moreover, if $\|x - a\| > \delta$, there exists a natural number n such that $|x_n^*(x - a)| > \delta$, so that $\phi(x) > 0$.

Our next objective is to prove that $A(\phi) = 0$. Fix N. By Proposition 2, there exists $x \in E$ such that $A(\phi) = \phi(x)$, $A(x_n^*(a)) = x_n^*(x)$ for every $i = 1, 2, \ldots, N$ and $A(\psi) = \psi(x)$. It follows that

$$A(\psi) = \psi(x) = \sum_{n=1}^{\infty} \alpha_n \varphi(x_n^*(x - a)) = \sum_{n=1}^{N} \alpha_n \varphi(x_n^*(x - a)) \geq 0$$

and

$$A(\phi) = \phi(x) = \sum_{n=1}^{\infty} (\alpha_n/n) \varphi(x_n^*(x - a)) = \sum_{n=1}^{N} (\alpha_n/n) \varphi(x_n^*(x - a)).$$

Therefore $0 \leq NA(\phi) \leq A(\psi)$. As this is valid for every N, we conclude that $A(\phi) = 0$.

Finally, by Proposition 2, there exists $y \in E$ such that $A(f) = f(y)$ and $0 = A(\phi) = \phi(y)$. Since $\phi(y) = 0$, we have $\|y - a\| < \delta$. It turns out, by the choice of δ, that $|f(y) - f(a)| < \varepsilon$. Hence what we have proved is that, for every $\varepsilon > 0$, the inequality $|A(f) - f(a)| < \varepsilon$ holds. This completes the proof.
BIBLIOGRAPHY

ANALISIS MATEMATICO, UNIVERSIDAD DE SEVILLA, SEVILLA, SPAIN

Current address: Facultad de Matemáticas, Apdo. 1160, 41080-Sevilla, Spain