Kernels of trace class operators
HTML articles powered by AMS MathViewer
- by Chris Brislawn
- Proc. Amer. Math. Soc. 104 (1988), 1181-1190
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929421-X
- PDF | Request permission
Abstract:
Let $X \subset {{\mathbf {R}}^n}$ and let $K$ be a trace class operator on ${L^2}(X)$ with corresponding kernel $K(x,y) \in {L^2}(X \times X)$. An integral formula for tr $K$, proven by Duflo for continuous kernels, is generalized for arbitrary trace class kernels. This formula is shown to be equivalent to one involving the factorization of $K$ into a product of Hilbert-Schmidt operators. The formula and its derivation yield two new necessary conditions for traceability of a Hilbert-Schmidt kernel, and these conditions are also shown to be sufficient for positive operators. The proofs make use of the boundedness of the Hardy-Littlewood maximal function on ${L^2}({{\mathbf {R}}^n})$.References
- M. Duflo, Généralités sur les représentations induites, Représentations des Groupes de Lie Résolubles, Monographies de la Soc. Math. de France, vol. 4, Dunod, Paris, 1972, pp. 93-119.
- Steven A. Gaal, Linear analysis and representation theory, Die Grundlehren der mathematischen Wissenschaften, Band 198, Springer-Verlag, New York-Heidelberg, 1973. MR 0447465
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Charles Rockland, Hypoellipticity on the Heisenberg group-representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1–52. MR 486314, DOI 10.1090/S0002-9947-1978-0486314-0
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Mitsuo Sugiura, Unitary representations and harmonic analysis, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1975. An introduction. MR 0498995
- F. G. Tricomi, Integral equations, Dover Publications, Inc., New York, 1985. Reprint of the 1957 original. MR 809184
- Joachim Weidmann, Integraloperatoren der Spurklasse, Math. Ann. 163 (1966), 340–345 (German). MR 199752, DOI 10.1007/BF02052518
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1181-1190
- MSC: Primary 47B38; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929421-X
- MathSciNet review: 929421