Rees algebras and mixed multiplicities
HTML articles powered by AMS MathViewer
- by J. K. Verma
- Proc. Amer. Math. Soc. 104 (1988), 1036-1044
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929432-4
- PDF | Request permission
Abstract:
Let $(R,m)$ be a local ring of positive dimension $d$ and $I$ and $J$ two $m$-primary ideals of $R$. Let $T$ denote the Rees algebra $R[Jt]$ localized at the maximal homogeneous ideal $(m,Jt)$. It is proved that \[ e((I,Jt)T = {e_0}(I|J) + {e_1}(I|J) + \cdots + {e_{d - 1}}(I|J),\] where ${e_i}(I|J),i = 0,1, \ldots ,d - 1$ are the first $d$ mixed multiplicities of $I$ and $J$. A formula due to Huneke and Sally concerning the multiplicity of the Rees algebra (of a complete zero-dimensional ideal of a two dimensional regular local ring) at its maximal homogeneous ideal is recovered.References
- P. B. Bhattacharya, The Hilbert function of two ideals, Proc. Cambridge Philos. Soc. 53 (1957), 568–575. MR 89835
- Craig Huneke, Complete ideals in two-dimensional regular local rings, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 325–338. MR 1015525, DOI 10.1007/978-1-4612-3660-3_{1}6
- Craig Huneke and Judith D. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), no. 2, 481–500. MR 943272, DOI 10.1016/0021-8693(88)90274-8
- Joseph Lipman, On complete ideals in regular local rings, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 203–231. MR 977761
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- D. Rees, ${\mathfrak {a}}$-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8–17. MR 118750, DOI 10.1017/s0305004100034800
- D. Rees, Hilbert functions and pseudorational local rings of dimension two, J. London Math. Soc. (2) 24 (1981), no. 3, 467–479. MR 635878, DOI 10.1112/jlms/s2-24.3.467
- D. Rees, The general extension of a local ring and mixed multiplicities, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 339–360. MR 846458, DOI 10.1007/BFb0075469
- D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), no. 3, 397–414. MR 754926, DOI 10.1112/jlms/s2-29.3.397
- Hans Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman. MR 0364103
- John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725
- Bernard Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972) Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973, pp. 285–362 (French). MR 0374482
- G. Valla, Certain graded algebras are always Cohen-Macaulay, J. Algebra 42 (1976), no. 2, 537–548. MR 422249, DOI 10.1016/0021-8693(76)90112-5
- Oscar Zariski, Polynomial Ideals Defined by Infinitely Near Base Points, Amer. J. Math. 60 (1938), no. 1, 151–204. MR 1507308, DOI 10.2307/2371550
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1036-1044
- MSC: Primary 13H15; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929432-4
- MathSciNet review: 929432