Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Note on multiplicity
HTML articles powered by AMS MathViewer

by Daniel Katz
Proc. Amer. Math. Soc. 104 (1988), 1021-1026
DOI: https://doi.org/10.1090/S0002-9939-1988-0929434-8

Abstract:

Let $(R,M)$ be a local ring with infinite residue field and $I = ({x_1}, \ldots ,{x_d})R$ an ideal generated by a system of parameters. It is shown that the multiplicity of $I$ equals the multiplicity of $IT$ where \[ T = \tilde R{[{x_1}/{x_d}, \ldots ,{x_{d - 1}}/{x_d}]_{M\tilde R[{x_1}/{x_d}, \ldots ,{x_{d - 1}}/{x_d}]}}\] and $\tilde R = R/(0:x_d^N),N$ large.
References
  • Daniel Katz, On the number of minimal prime ideals in the completion of a local domain, Rocky Mountain J. Math. 16 (1986), no. 3, 575–578. MR 862283, DOI 10.1216/RMJ-1986-16-3-575
  • D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1968. MR 0231816
  • D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
  • D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24–28. MR 126465, DOI 10.1112/jlms/s1-36.1.24
  • D. Rees, Degree functions in local rings, Proc. Cambridge Philos. Soc. 57 (1961), 1–7. MR 124353, DOI 10.1017/s0305004100034794
  • D. Rees, ${\mathfrak {a}}$-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8–17. MR 118750, DOI 10.1017/s0305004100034800
  • D. Rees and R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. (2) 18 (1978), no. 3, 449–463. MR 518229, DOI 10.1112/jlms/s2-18.3.449
  • Bernard Teissier, Cycles Ă©vanescents, sections planes et conditions de Whitney, SingularitĂ©s Ă  Cargèse (Rencontre SingularitĂ©s GĂ©om. Anal., Inst. Études Sci., Cargèse, 1972) AstĂ©risque, Nos. 7 et 8, Soc. Math. France, Paris, 1973, pp. 285–362 (French). MR 0374482
  • —, Sur une inĂ©galitĂ© la Minkowski pour les multiplicitĂ©s (Appendix to a paper by D. Eisenbud and H. I. Levine), Ann. of Math. (2) 106 (1977), 38-44.
  • B. Teissier, On a Minkowski-type inequality for multiplicities. II, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 347–361. MR 541030
  • Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H15, 13B20
  • Retrieve articles in all journals with MSC: 13H15, 13B20
Bibliographic Information
  • © Copyright 1988 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 104 (1988), 1021-1026
  • MSC: Primary 13H15; Secondary 13B20
  • DOI: https://doi.org/10.1090/S0002-9939-1988-0929434-8
  • MathSciNet review: 929434