Note on multiplicity
HTML articles powered by AMS MathViewer
- by Daniel Katz
- Proc. Amer. Math. Soc. 104 (1988), 1021-1026
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929434-8
- PDF | Request permission
Abstract:
Let $(R,M)$ be a local ring with infinite residue field and $I = ({x_1}, \ldots ,{x_d})R$ an ideal generated by a system of parameters. It is shown that the multiplicity of $I$ equals the multiplicity of $IT$ where \[ T = \tilde R{[{x_1}/{x_d}, \ldots ,{x_{d - 1}}/{x_d}]_{M\tilde R[{x_1}/{x_d}, \ldots ,{x_{d - 1}}/{x_d}]}}\] and $\tilde R = R/(0:x_d^N),N$ large.References
- Daniel Katz, On the number of minimal prime ideals in the completion of a local domain, Rocky Mountain J. Math. 16 (1986), no. 3, 575–578. MR 862283, DOI 10.1216/RMJ-1986-16-3-575
- D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1968. MR 0231816
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24–28. MR 126465, DOI 10.1112/jlms/s1-36.1.24
- D. Rees, Degree functions in local rings, Proc. Cambridge Philos. Soc. 57 (1961), 1–7. MR 124353, DOI 10.1017/s0305004100034794
- D. Rees, ${\mathfrak {a}}$-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8–17. MR 118750, DOI 10.1017/s0305004100034800
- D. Rees and R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. (2) 18 (1978), no. 3, 449–463. MR 518229, DOI 10.1112/jlms/s2-18.3.449
- Bernard Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972) Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973, pp. 285–362 (French). MR 0374482 —, Sur une inégalité la Minkowski pour les multiplicités (Appendix to a paper by D. Eisenbud and H. I. Levine), Ann. of Math. (2) 106 (1977), 38-44.
- B. Teissier, On a Minkowski-type inequality for multiplicities. II, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 347–361. MR 541030
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1021-1026
- MSC: Primary 13H15; Secondary 13B20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929434-8
- MathSciNet review: 929434