Semiconfluent maps and continua containing no $n$-ods
HTML articles powered by AMS MathViewer
- by Eldon J. Vought
- Proc. Amer. Math. Soc. 104 (1988), 1311-1314
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929435-X
- PDF | Request permission
Abstract:
J. F. Davis proved that the semiconfluent image of an atriodic continuum is atriodic and asked if this result could be generalized to $n$-ods. In this paper the question is answered in the affirmative. It is proved that the semiconfluent image of a Hausdorff continuum containing no $n$-ods must contain no $n$-odsReferences
- James F. Davis, The preservation of atriodicity by semiconfluent mappings, Proc. Amer. Math. Soc. 100 (1987), no. 3, 579–584. MR 891167, DOI 10.1090/S0002-9939-1987-0891167-3
- E. E. Grace and Eldon J. Vought, Semi-confluent and weakly confluent images of tree-like and atriodic continua, Fund. Math. 101 (1978), no. 2, 151–158. MR 518350, DOI 10.4064/fm-101-2-151-158
- T. Maćkowiak, Semi-confluent mappings and their invariants, Fund. Math. 79 (1973), no. 3, 251–264. MR 321044, DOI 10.4064/fm-79-3-251-264
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1311-1314
- MSC: Primary 54F20; Secondary 54C10, 54F50
- DOI: https://doi.org/10.1090/S0002-9939-1988-0929435-X
- MathSciNet review: 929435