On a theorem of Hardy and Littlewood
HTML articles powered by AMS MathViewer
- by Luis G. Bernal
- Proc. Amer. Math. Soc. 104 (1988), 1078-1080
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931724-X
- PDF | Request permission
Abstract:
In this paper, we give an extension of a classical theorem of Hardy and Littlewood on power series. Let $\varphi$ be a strictly positive function defined on some interval $\left ( {\delta ,1} \right )$, satisfying a certain condition of limit. We prove that if $f\left ( x \right )$ is the sum of a convergent power series for $0 < x < 1$ with nonnegative coefficients ${a_n}$ and $f\left ( x \right ) \sim \varphi \left ( x \right )\;\left ( {x \to 1} \right )$, then ${S_n} \sim \alpha \cdot \varphi \left ( {x_0^{1/n}} \right )\left ( {n \to \infty } \right )$, where ${S_n} = {a_0} + {a_1} + \cdots + {a_{n,\;}}{x_0} \in \left ( {0,1} \right )$ and $\alpha$ depends only upon $\varphi$.References
- P. Dienes, The Taylor series: an introduction to the theory of functions of a complex variable, Dover Publications, Inc., New York, 1957. MR 0089895 G. H. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet’s series whose coefficients are positive, Proc. London Math. Soc. (2) 11 (1911), pp. 411-478.
- J. Karamata, Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes, Math. Z. 32 (1930), no. 1, 319–320 (German). MR 1545168, DOI 10.1007/BF01194636
- E. C. Titchmarsh, Han-shu lun, Science Press, Peking, 1964 (Chinese). Translated from the English by Wu Chin. MR 0197687
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1078-1080
- MSC: Primary 40E05; Secondary 30B10, 30B30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931724-X
- MathSciNet review: 931724