Is there a point of $\omega ^ *$ that sees all others?
HTML articles powered by AMS MathViewer
- by Neil Hindman
- Proc. Amer. Math. Soc. 104 (1988), 1235-1238
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931732-9
- PDF | Request permission
Abstract:
If the cardinal $c$ of the continuum is singular and $p$ is an ultrafilter on $\omega$ of character $c$, then there is an ultrafilter $q$ on $\omega$ which is not comparable to $p$ in the Rudin-Keisler order.References
- W. W. Comfort, Ultrafilters: an interim report, Surveys in general topology, Academic Press, New York-London-Toronto, Ont., 1980, pp. 33–54. MR 564099
- W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR 0396267, DOI 10.1007/978-3-642-65780-1 D. Fremlin, Consequences of Martin’s Axiom, Cambridge Univ. Press, Cambridge, 1984.
- K. Kunen, Weak $P$-points in $\textbf {N}^{\ast }$, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 741–749. MR 588822
- Jan van Mill, An introduction to $\beta \omega$, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR 776630
- Walter Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419. MR 80902
- S. Shelah and M. E. Rudin, Unordered types of ultrafilters, Topology Proc. 3 (1978), no. 1, 199–204 (1979). MR 540490
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1235-1238
- MSC: Primary 04A20; Secondary 03E05, 54D35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931732-9
- MathSciNet review: 931732