Some remarks on the Pompeiu problem for groups
HTML articles powered by AMS MathViewer
- by David Scott and Alladi Sitaram
- Proc. Amer. Math. Soc. 104 (1988), 1261-1266
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931747-0
- PDF | Request permission
Abstract:
A Borel set $E$ in a topological group $G$ is said to be a $P$-set for the space of integrable functions on $G$ if the zero function is the only integrable function whose integral over all left and right translates of $E$ by elements of $G$ is zero. For a "sufficiently nice" group $G$ and a Borel set $E$ of finite Haar measure a certain condition on the Fourier transform of a function related to $E$ is shown to be a sufficient condition for $E$ to be a $P$-set. This condition is then applied to several classes of groups including certain compact groups, certain semisimple Lie groups, the Heisenberg groups and the Euclidean motion group of the plane.References
- S. C. Bagchi and A. Sitaram, Determining sets for measures on $\textbf {R}^{n}$, Illinois J. Math. 26 (1982), no. 3, 419–422. MR 658452
- Carlos Alberto Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse Math. 37 (1980), 128–144. MR 583635, DOI 10.1007/BF02797683
- Carlos A. Berenstein, Spectral synthesis on symmetric spaces, Integral geometry (Brunswick, Maine, 1984) Contemp. Math., vol. 63, Amer. Math. Soc., Providence, RI, 1987, pp. 1–25. MR 876311, DOI 10.1090/conm/063/876311
- Carlos A. Berenstein and Mehrdad Shahshahani, Harmonic analysis and the Pompeiu problem, Amer. J. Math. 105 (1983), no. 5, 1217–1229. MR 714774, DOI 10.2307/2374339
- Carlos A. Berenstein and Lawrence Zalcman, Pompeiu’s problem on symmetric spaces, Comment. Math. Helv. 55 (1980), no. 4, 593–621. MR 604716, DOI 10.1007/BF02566709
- Leon Brown, Bertram M. Schreiber, and B. Alan Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 125–154 (English, with French summary). MR 352492
- Ronald L. Lipsman, Group representations, Lecture Notes in Mathematics, Vol. 388, Springer-Verlag, Berlin-New York, 1974. A survey of some current topics. MR 0372116
- Inder K. Rana, Determination of probability measures through group actions, Z. Wahrsch. Verw. Gebiete 53 (1980), no. 2, 197–206. MR 580913, DOI 10.1007/BF01013316
- Inder K. Rana, Determination of probability measures through group actions, Z. Wahrsch. Verw. Gebiete 53 (1980), no. 2, 197–206. MR 580913, DOI 10.1007/BF01013316
- N. A. Sapogov, A uniqueness problem for finite measures in Euclidean spaces, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 3–13, 165 (Russian). Problems in the theory of probability distributions, II. MR 0385946
- Alladi Sitaram, Fourier analysis and determining sets for Radon measures on $\textbf {R}^{n}$, Illinois J. Math. 28 (1984), no. 2, 339–347. MR 740622
- Alladi Sitaram, Some remarks on measures on noncompact semisimple Lie groups, Pacific J. Math. 110 (1984), no. 2, 429–434. MR 726500
- Mitsuo Sugiura, Unitary representations and harmonic analysis, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1975. An introduction. MR 0498995
- Michael E. Taylor, Noncommutative harmonic analysis, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR 852988, DOI 10.1090/surv/022 G. Warner, Harmonic analysis on semisimple Lie groups, 2 vols., Springer-Verlag, 1972.
- Yitzhak Weit, On Schwartz’s theorem for the motion group, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 1, vi, 91–107 (English, with French summary). MR 576074
- Lawrence Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), no. 3, 161–175. MR 562919, DOI 10.2307/2321600
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1261-1266
- MSC: Primary 43A60; Secondary 22E30, 43A80
- DOI: https://doi.org/10.1090/S0002-9939-1988-0931747-0
- MathSciNet review: 931747