WEAKLY NORMAL FILTERS AND THE CLOSED UNBOUNDED FILTER ON $P_\kappa \lambda$

YOSHIHIRO ABE

(Communicated by Thomas J. Jech)

ABSTRACT. Assuming that κ is supercompact and λ is inaccessible, we present two isomorphic fine measures on $P_\kappa \lambda$ containing the closed unbounded filter. Some remarks on the (strongly) closed unbounded filter and weakly normal filters are added.

In the theory of κ-ultrafilters on a measurable cardinal κ, the closed unbounded filter (the club filter) plays an important role. For instance, Ketonen showed that any two distinct κ-ultrafilters containing the club filter are not isomorphic.

Weakly normal filters on a regular cardinal are also important. A filter is weakly normal iff it is a p-point containing the club filter. Every countably complete ultrafilter is minimal in the RK-ordering iff it is isomorphic to a weakly normal ultrafilter.

Jech is the first to introduce some combinatorial principles into $P_\kappa \lambda$ from the usual fields of κ. At first $P_\kappa \lambda$ seemed the same as κ. But it turned out to be more complicated. Menas proved that every normal measure on $P_\kappa \lambda$ where λ is a strong limit with the cofinality less than κ is isomorphic to a fine measure containing the club filter on $P_\kappa \lambda$. (See Proposition 12 in [9].) In [4], Gitik constructed a model in which there is a stationary subset of $P_\kappa \kappa^+$ that cannot be split into κ^+ disjointed stationary sets.

Applying Menas’ result, we present two isomorphic fine measures on $P_\kappa \lambda$ both of which contain the club filter under the hypothesis that κ is supercompact and λ is strongly inaccessible.

In [1], a kind of fine measure on $P_\kappa \lambda$ investigated by Menas, was studied. By the embedding argument, it was pointed out that such a measure is not normal and can be weakly normal in suitable conditions. We take a combinatorial approach and show that filters of the same type do not contain a standard club set, indeed strongly closed unbounded. We extend the results in [1] on the weak normality of such a filter.

At last, some remarks on the relation between the RK-order and weakly normal fine measures, the strongly club filter and the partition property are added.

0. Definitions and notations. κ is a regular uncountable cardinal and λ is a cardinal $> \kappa$ throughout. $P_\kappa \lambda = \{ x \subseteq \lambda : |x| < \kappa \}$. When we speak of a filter on $P_\kappa \lambda$ it is assumed to be κ-complete and fine, where U is fine iff $\{ x : \alpha \in x \} \in U$ for all $\alpha < \lambda$.

Received by the editors September 22, 1987, and in revised form, February 8, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 04A20; Secondary 03E05.

©1988 American Mathematical Society

0002-9939/88 $1.00 +$.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
DEFINITION 0.1. U is normal if every regressive function is constant on a set of positive measure. (We write $X \in U^+$ if X is positive measure.) U is weakly normal if every regressive function is bounded by some $\gamma < \lambda$ on a set in U. We call U a fine measure if it is an ultrafilter.

A subset C of $P_\lambda \lambda$ is said to be unbounded if for each $a \in P_\lambda \lambda$ there is an $x \in C$ so that $a \subset x$. \dot{a} denotes the set $\{x \in P_\lambda \lambda : a \subset x\}$. Thus C is unbounded if $\dot{a} \cap C \neq \emptyset$ for all $a \in P_\lambda \lambda$. C is closed if $\bigcup A \in C$ whenever A is a \subset-increasing chain of length $< \kappa$ in C. C is strongly closed if $\bigcup A \in C$ for all $A \subset C$ with $|A| < \kappa$. The club filter $\text{CF}_{\kappa \lambda}$ is the filter generated by the closed unbounded sets. The strongly club filter $\text{SCF}_{\kappa \lambda}$ is the filter generated by the strongly closed unbounded sets.

Let U be a fine measure on $P_\lambda \lambda$ and $f : P_\lambda \rightarrow P_\lambda$. The ultrafilter $f_* (U)$ defined by "$X \in f_* (U)$ if $f^{-1} (X) \in U$" is a fine measure provided that $\{x : \alpha < f (x)\} \in U$ for all $\alpha < \lambda$.

DEFINITION 0.2. Suppose that U and D are fine measures on $P_\lambda \lambda$. We write $U \leq D$ if $U = f_* (D)$ for some $f : P_\lambda \lambda \rightarrow P_\lambda \lambda$. U and D are isomorphic ($U \cong D$) if $U = f_* (D)$ and f is one-to-one on a set $X \in D$. D is minimal in the RK-order if D is isomorphic to all $U \leq D$.

DEFINITION 0.3. Suppose that f is an ordinal valued function with domain $P_\lambda \lambda$. f is the first function of U if $\{x : f (x) > \gamma\} \in U$ for any $\gamma < \lambda$, and $\{x : g (x) < \gamma\} \in U$ for some $\gamma < \lambda$ whenever $\{x : g (x) < f (x)\} \in U$.

The first function tells us whether a fine measure is minimal or not under the certain assumption on λ.

DEFINITION 0.4. A fine measure U has the partition property if every $F : [P_\lambda \lambda]^2 = \{(x, y) : x, y \in P_\lambda \lambda$ and $x \subseteq y\} \rightarrow 2$ has a homogeneous set in U. (A is homogeneous for F if there is a $k < 2$ so that for all $x, y \in A$ with $x/ \subseteq y$, $F(\{x, y\}) = k$.)

1. Isomorphic fine measures. In this section, λ is a fixed inaccessible cardinal greater than κ, a supercompact. We shall present two isomorphic fine measures including $\text{CF}_{\kappa \lambda}$. Though we extend the result of Menas, we have to start from it.

LEMMA 1.1 (Menas [9]). Let δ be a strong limit cardinal with the cofinality less than κ. Then every normal measure on $P_\delta \delta$ is isomorphic to a nonnormal fine measure containing $\text{CF}_{\kappa \delta}$.

Let $A = \{\delta : \kappa < \delta < \lambda, \delta$ is strong limit, $\text{cf}(\delta) < \kappa\}$. For each $\delta \in A$, there is a function $q^\delta : P_\delta \delta \rightarrow P_\kappa \delta$ so that $\text{CF}_{\kappa \delta} \subset q^\delta(\mathbb{U}_\delta) \equiv U_\delta$ where U_δ is a normal measure on $P_\kappa \delta$. We shall sum up these U_δ's and $q^\delta(\mathbb{U}_\delta)$'s with a suitable ultrafilter on λ.

LEMMA 1.2. There exists a κ-complete ultrafilter on λ including $\{A\} \cup \text{CF}_\lambda$. ($\text{CF}_\lambda$ is the club filter on λ.)

PROOF. Since λ is inaccessible, A is stationary. Hence we have a λ-complete filter $E = \{X \subseteq \lambda : A - X$ is not stationary$\}$. It is easily seen that $\{A\} \cup \text{CF}_\lambda \subset E$. Then the strong compactness of κ gives us a κ-complete ultrafilter D extending E.

We use the above D. Define F_1 and F_2 by
\[X \in F_1 \quad \text{if} \quad X \subseteq P_\lambda \lambda \text{ and } \{\delta \in A : X \cap P_\kappa \delta \in U_\delta\} \in D, \]
\[X \in F_2 \quad \text{if} \quad X \subseteq P_\lambda \lambda \text{ and } \{\delta \in A : X \cap P_\kappa \delta \in q^\delta(\mathbb{U}_\delta)\} \in D. \]

F_1 and F_2 are fine measures on $P_\lambda \lambda$. We want to show that they are isomorphic and contain $\text{CF}_{\kappa \lambda}$. The next is an easy but key lemma.
Lemma 1.3. Assume that $\text{cf}(\eta) < \kappa$ and U is a fine measure on $P_\kappa \eta$. Then
\(\{ x \in P_\kappa \eta : \text{sup}(x) = \eta \} \in U. \)

Proof. Let \(\{ \eta_\alpha : \alpha < \text{cf}(\eta) \} \) be a cofinal subset of \(\eta \). Since \(U \) is fine, \(\{ x : \eta_\alpha \in x \} \in U \) for each \(\alpha < \text{cf}(\eta) \). Using the \(\kappa \)-completeness of \(U \) and the fact that \(\text{cf}(\eta) < \kappa \), we get \(\{ x : \eta_\alpha \in x \text{ for every } \alpha < \text{cf}(\eta) \} \in U. \)

Corollary 1.4. For every \(\delta \in A \), \(\{ x \in P_\kappa \delta : \text{sup}(x) = \delta \} \in U_\delta \) and \(\{ x \in P_\kappa \delta : \text{sup}(q^\delta(x)) = \delta \} \in U_\delta. \)

Proof. Since \(q^\delta(U_\delta) \) is also a fine measure on \(P_\kappa \delta \) and \(\text{cf}(\delta) < \kappa \), \(\{ x : \text{sup}(x) = \delta \} \in q^\delta(U_\delta) \). This is equivalent to \(\{ x : \text{sup}(q^\delta(x)) = \delta \} \in U_\delta. \)

For \(x \in P_\kappa \lambda \), let \(\delta_x \) be the least member of \(A \) such that \(x \in P_\kappa \delta \). And \(q : P_\kappa \lambda \to P_\kappa \lambda \) is defined by

\[
q(x) = q^\delta(x).
\]

By our construction,

Lemma 1.5. For every \(\delta \in A \), \(\{ x \in P_\kappa \delta : \delta_x = \delta \} \in U_\delta \); hence \(\{ x : q(x) = q^\delta(x) \} \in U_\delta. \)

We can see that \(F_1 \) and \(F_2 \) are isomorphic.

Lemma 1.6. \(q \) is one-to-one on a set in \(F_1 \).

Proof. Let \(B_\delta \in U_\delta \) be such that \(q^\delta \) is one-to-one on \(B_\delta \). We have already

known that \(C_\delta = \{ x \in B_\delta : q(x) = q^\delta(x), \text{sup}(q^\delta(x)) = \text{sup}(x) = \delta \} \in U_\delta \). Hence
\(C = \bigcup \{ C_\delta : \delta \in A \} \) is a member of \(F_1 \).

Suppose that \(x, y \in C \) and \(q(x) = q(y) \). There is a \(\delta \in A \) such that \(\delta = \text{sup}(x) = \text{sup}(q(x)) = \text{sup}(y). \) Since \(x \) and \(y \) are in the same \(C_\delta \) and \(q \upharpoonright C_\delta = q^\delta \upharpoonright C_\delta \) is one-to-one, we have \(x = y \). Thus \(q \) is one-to-one on \(C \in F_1. \)

Lemma 1.7. \(F_2 = q^*(F_1). \)

Proof. Recall that \(X \in F_2 \) iff \(\{ \delta \in A : X \cap P_\kappa \delta \in q^\delta(U_\delta) \} \in D \), and that \(X \cap P_\kappa \delta \in q^\delta(U_\delta) \) is equivalent to \(\{ x \in P_\kappa \delta : q^\delta(x) \in X \cap P_\kappa \delta \} \in U_\delta \). By 1.5, the last paraphrase is the same as \(\{ x \in P_\kappa \delta : q(x) \in X \} \in U_\delta \).

Let \(Y = \{ x \in P_\kappa \lambda : q(x) \in X \} \). We have shown that \(X \in F_2 \) is equivalent to \(\{ \delta \in A : Y \cap P_\kappa \delta \in U_\delta \} \in D \). The latter says that \(Y \in F_1 \) and \(X \in q^*(F_1). \) Hence \(X \in F_2 \) iff \(X \in q^*(F_1). \)

What is left to show is that both \(F_1 \) and \(F_2 \) contain \(\text{CF}_{\kappa \lambda} \). Note that \(\{ \delta < \lambda : X \cap P_\kappa \delta \in \text{CF}_{\kappa \delta} \} \in \text{CF}_{\kappa \lambda} \) for every \(X \in \text{CF}_{\kappa \lambda}. \)

Lemma 1.8. \(\text{CF}_{\kappa \lambda} \subseteq F_1 \cap F_2. \)

Proof. Suppose that \(X \in \text{CF}_{\kappa \lambda} \). Then \(X' = \{ \delta < \lambda : X \cap P_\kappa \delta \in \text{CF}_{\kappa \delta} \} \in \text{CF}_{\kappa \lambda} \subseteq D \). Since \(U_\delta \) and \(q^\delta(U_\delta) \) contain \(\text{CF}_{\kappa \delta} \), \(X \cap P_\kappa \delta \) belongs to both \(U_\delta \) and \(q^\delta(U_\delta) \) for all \(\delta \in X'. \) Hence \(X \in F_1 \cap F_2. \)

Now we are done.

Theorem 1.9. If \(\lambda \) is a strongly inaccessible cardinal greater than \(\kappa \) a supercompact, there are two distinct isomorphic fine measures on \(P_\kappa \lambda \) containing the club filter.

The author does not know whether a normal measure on \(P_\kappa \lambda \) is isomorphic to a fine measure containing \(\text{CF}_{\kappa \lambda} \) under the same assumption. It is also still open...
whether two fine measures can be isomorphic for a successor cardinal \(\lambda \). The case that \(\lambda \) is not strong limit is also open.

2. SCF\(_{\kappa \lambda} \), prestationary sets and the partition property. For the subsets of regular uncountable cardinals, the situation is simple. That is, \(S \subseteq \kappa \) is stationary iff for any regressive function \(f \) on \(S \), there is an unbounded set \(T \subseteq S \) on which \(f \) is constant. But this does not hold for the subsets of \(P_{\kappa \lambda} \).

In this section, \(\kappa \) is a regular uncountable cardinal and \(\lambda > \kappa \). We begin by Menas’ invention again.

Proposition 2.1 (Menas [8]). There is a nonstationary subset \(S \) of \(P_{\kappa \lambda} \) such that every regressive function is constant on an unbounded subset of \(S \).

Definition 2.2. We call such a set \(S \) “prestationary”.

Menas characterized \(S \) “stationary” as follows:

Proposition 2.3 (Menas [8]). \(S \subseteq P_{\kappa \lambda} \) is stationary iff any function \(f : S \to \lambda \times \lambda \) so that \(f(y) \in y \times y \) for all \(y \in S \), is constant on some unbounded \(T \subseteq S \).

In the spirit of Proposition 2.3, we can express stationarity using prestationarity.

Proposition 2.4. If \(S \subseteq P_{\kappa \lambda} \) is prestationary and every regressive function is constant on a prestationary \(T \subseteq S \), then \(S \) is stationary.

Proof. Let \(f : S \to \lambda \times \lambda \), \(f_1, f_2 : S \to \lambda \) so that \(f(y) \in y \times y \) for all \(y \in S \) and \(f(y) = (f_1(y), f_2(y)) \). Since \(f_1(y) \in y \) for all \(y \in S \), there is a prestationary \(T_1 \subseteq S \) on which \(f_1 \) is constant. Again by the fact that \(f_2(y) \in y \) for every \(y \) in \(T_1 \) that is prestationary, there is an unbounded \(T_2 \subseteq T_1 \) so that \(f_2 \upharpoonright T_2 \) is constant. Then \(f \upharpoonright T_2 \) is constant. \(\square \)

The stationary subsets are the sets which have nonempty intersection with every closed unbounded set. Now we characterize the prestationary sets with SCF\(_{\kappa \lambda} \). First recall the theorem for SCF\(_{\kappa \lambda} \) in Carr [3].

Lemma 2.5 (Carr). \(C \subseteq SCF_{\kappa \lambda} \) iff there is a sequence of sets in \(P_{\kappa \lambda} \), \(\langle x_\alpha | \alpha < \lambda \rangle \) so that \(\Delta(\dot{x}_\alpha | \alpha < \lambda) = \{ y : x_\alpha \subseteq y \text{ for all } \alpha \in y \} \subseteq C \).

Proposition 2.6. \(S \subseteq P_{\kappa \lambda} \) is prestationary iff \(S \cap C \neq 0 \) for all \(C \subseteq SCF_{\kappa \lambda} \).

Proof. Suppose that \(S \) is prestationary and \(S \cap C = 0 \) for some \(C \subseteq SCF_{\kappa \lambda} \). By 2.5, there is a sequence \(\langle x_\alpha | \alpha < \lambda \rangle \) so that \(\Delta(\dot{x}_\alpha | \alpha < \lambda) \subseteq C \). For every \(x \in S \), there exists an \(\alpha \in x \) such that \(x_\alpha \not\subseteq x \). Since \(S \) is prestationary, there is an ordinal \(\gamma \) so that \(\{ x \in S : x_\gamma \not\subseteq x \} \) is unbounded. Contradiction.

For the converse, assume that \(S \cap C \neq 0 \) for all \(C \subseteq SCF_{\kappa \lambda} \) and \(S \) is not prestationary. There is a regressive function \(f \) such that for every \(\alpha < \lambda \) there is an \(a_\alpha \in P_{\kappa \lambda} \) so that \(\{ x \in S : f(x) = \alpha \} \cap a_\alpha = 0 \). Let \(C = \Delta(a_\alpha | \alpha < \lambda) \); then \(C \subseteq SCF_{\kappa \lambda} \). Pick an \(x \in C \cap S \) and suppose that \(f(x) = \alpha \). Since \(\alpha \in x \) and \(x \in C \), \(a_\alpha \subseteq x \). Then \(f(x) \neq \alpha \) by the definition of \(a_\alpha \). This is absurd. \(\square \)

We connect the above fact to the partition property of fine measures.

Corollary 2.7. If \(U \) is a fine measure with the partition property assigning measure one to the strongly club sets, then \(U \) is normal.

This is really Proposition 11 in Menas [9], where he proved it for the club sets version. Menas’ proof is applicable in our case as well.
3. Weakly normal filters on $P_\kappa\lambda$. For weakly normal filters on κ regular, see Kanamori [7]. We briefly review the basic facts.

PROPOSITION 3.1. For any filter on κ, the following are equivalent.

(i) U is weakly normal.

(ii) Every filter extension of U is weakly normal.

(iii) If $\{X_\alpha : \alpha < \kappa\}$ are sets of positive measure such that $X_\beta \subseteq X_\alpha$ whenever $\alpha < \beta$, then $\Delta\{X_\alpha : \alpha < \kappa\} = \{\alpha < \kappa : \alpha \in \beta \text{ for all } \beta < \alpha\}$ has a positive measure.

(iv) U is a p-point filter extending CF_κ. (U is a p-point if every function $f : \kappa \rightarrow \kappa$ such that $\kappa - f^{-1}(\{\alpha\}) \subseteq U$ for all $\alpha < \kappa$ is $< \kappa$ to one on some $X \in U$.)

It is natural to ask whether the same thing happens to filters on $P_\kappa\lambda$. We easily get that (i)\sim(iii) are also equivalent for any filter on $P_\kappa\lambda$. (Note that $\Delta\{X_\alpha : \alpha < \lambda\} = \{x \in P_\kappa\lambda : x \in X_\alpha \text{ for all } \alpha \in X\}$.)

But for (iv), the author only knows the following.

PROPOSITION 3.2. (i) Suppose that U is weakly normal. If f is a function with the domain $P_\kappa\lambda$ and $\{x : f(x) > \alpha\} \subseteq U^+$ for all $\alpha < \lambda$, then there is a set X of positive measure so that $X \cap f^{-1}(\{\alpha\}) \subseteq P_\kappa\lambda$ for all $\alpha < \lambda$.

(ii) Suppose that U extends $\text{SCF}_{\kappa\lambda}$ and for any $\alpha < \lambda$ there is an $X \in U^+$ such that $X \cap f^{-1}(\{\alpha\}) \subseteq P_\kappa\beta$ for some $\beta < \lambda$ whenever f satisfies $\{x : f(x) > \gamma\} \subseteq U^+$ for some $\gamma < \lambda$. Then U is weakly normal.

PROOF. (i) Let $X_\xi = \{x : f(x) > \xi\}$ for each $\xi < \lambda$. Then $X_\xi \subseteq U^+$ and $X_\eta \subseteq X_\xi$ if $\xi < \eta$. Now $\Delta\{X_\xi : \xi < \lambda\} \subseteq U^+$ by (iii). If $x \in \Delta\{X_\xi : \xi < \lambda\}$ and $f(x) = \alpha$, then $\xi < \alpha$ for all $\xi \in x$. Hence $x \subset\alpha$.

(ii) Suppose that f is a regressive function on $P_\kappa\lambda$. Since U extends $\text{SCF}_{\kappa\lambda}$, every X of positive measure is prestationary. Hence there is an $\alpha < \lambda$ so that $X \cap f^{-1}(\{\alpha\})$ is unbounded. By our hypothesis, $\{x : f(x) < \gamma\} \subseteq U^+$ for some $\gamma < \lambda$. The question left is whether every weakly normal filter extends $\text{CF}_{\kappa\lambda}$ or $\text{SCF}_{\kappa\lambda}$. In [1], the fine measure investigated by Menas was revisited and shown to be non-normal. We again observe it and get more information, which gives a negative answer to the question. The author wishes to express his gratitude to A. Blass whose advice led to a simplified proof. We concentrate on a filter defined below.

We assume that κ is a regular limit cardinal.

Let $\langle U_\alpha : \alpha < \kappa \rangle$ be a sequence of fine filters on $P_\alpha\lambda$ and D be a κ-complete uniform filter on κ. Then a fine filter U is defined by $X \in U$ if $X \subseteq P_\kappa\lambda$ and $\{\alpha < \kappa : X \cap P_\alpha\lambda \subseteq U_\alpha\} \subseteq D$.

THEOREM 3.3 (INSPIRED BY BLASS). U does not extend $\text{SCF}_{\kappa\lambda}$ hence is nonnormal.

PROOF. Let $C = \{x \in P_\kappa\lambda : x \cap \kappa \text{ is an ordinal}\}$. Then C is strongly closed unbounded. We shall show that $C \cap P_\alpha\lambda$ is not unbounded for all $\alpha < \kappa$. If $x \in C \cap P_\alpha\lambda$ and $\alpha^+ \subseteq x$, then $\alpha^+ \subseteq x$. But this contradicts $|x| < \alpha$. Hence $\alpha^+ \not\subseteq x$ for all $x \in C \cap P_\alpha\lambda$. Thus $C \not\subseteq U$. Note that $\alpha^+ < \kappa < \lambda$ since κ is a limit cardinal. □

For certain $A \subseteq \kappa$ we have a strongly club set which is not unbounded for any $\alpha \in A$. More precisely;
PROPOSITION 3.4. Suppose that $\lambda^\kappa = \lambda$ and $A \subseteq \kappa$. There is a $C \in \text{SCF}_{\kappa\lambda}$ so that if $\alpha \in A$ and $\sup(A \cap \alpha) \neq \alpha$, then $C \cap P_\alpha \lambda$ is not unbounded.

PROOF. Let $\{x_\xi : \xi < \lambda\}$ be an enumeration of $P_\lambda \lambda$ and $\alpha_\xi = \text{the least member of } A > |x_\xi|$. Then, we pick a $y_\xi \supset x$ with $|y_\xi| \geq \alpha_\xi^+$. Finally, $C = \Delta(y_\xi : \xi < \lambda)$.

Suppose that $\alpha \in A$ and $\sup(A \cap \alpha) \neq \alpha$. Then $\alpha = \alpha_\xi$ for some x_ξ. Assume that there exists an $x \in C \cap P_\lambda \lambda$ with $\xi \in x$. By our definition of C, $x \supset y_\xi$. This implies $|x| \geq |y_\xi| \geq \alpha_\xi^+ > \alpha$ contradicting $x \in P_\alpha \lambda$. Hence $(C \cap P_\alpha \lambda) \cap \{\xi\} = 0$. □

Now we turn to the weak normality of U under the assumption that U_α is weakly normal for all $\alpha < \kappa$, and improve Proposition 2.4 in [1] by a simple argument. In the next theorem, κ is not necessarily a limit cardinal in (i) and (iii).

THEOREM 3.5. (i) $\text{cf}(\lambda) > \kappa$, then U is weakly normal.
(ii) $\text{cf}(\lambda) = \kappa$, then U is not weakly normal.
(iii) If $\text{cf}(\lambda) < \kappa$ and (a) or (b) is satisfied, then U is weakly normal.

(a) U is an ultrafilter.
(b) D is $\text{cf}(\lambda)$-descendingly complete. That is, if $\{X_\xi : \xi < \text{cf}(\lambda)\}$ is a sequence of positive measure such that $X_\eta \subset X_\xi$ whenever $\xi < \eta$, then $\bigcap\{X_\xi : \xi \in \text{cf}(\lambda)\} \neq 0$.

(Note that D is not required to be an ultrafilter.)

PROOF. Suppose that $f(x) \in x$ for every $x \in P_\lambda \lambda$.

(i) For $\alpha < \kappa$, δ_α is an ordinal $< \lambda$ such that $\{x \in P_\alpha \lambda : f(x) < \delta_\alpha\} \in U_\alpha$. Since $\text{cf}(\lambda) > \kappa$, $\delta = \sup(\{\delta_\alpha : \alpha < \kappa\}) < \lambda$. Obviously $\{x \in P_\kappa \lambda : f(x) < \delta\} \in U$.

(ii) Let $\{\lambda_\alpha : \alpha < \kappa\}$ be a cofinal subset of λ and $\lambda_\alpha < \lambda_\beta$ if $\alpha < \beta$. For each $\alpha < \kappa$, $\{x \in P_\alpha \lambda : \lambda_\alpha \in x \text{ and } \lambda_\alpha < \lambda_\alpha \} \in U$. Hence we have $\{x \in P_\kappa \lambda : x - \lambda_{|x|} \neq 0\} \in U$.

So, there is a function $g : P_\kappa \lambda \rightarrow \lambda$ such that $g(x) \in x$ and $g(x) > \lambda_{|x|}$ for almost all x (mod U). For any $\alpha < \kappa$, we know that $\{x \in P_\alpha \lambda : x \supset \alpha^+\} \in U$ and then $\{x : \lambda_{|x|} > \lambda_\alpha\} \in U$. Hence $\{x \in P_\kappa \lambda : g(x) > \lambda_\alpha\} \in U$ for every $\alpha < \kappa$. We are done because g is an unbounded regressive function.

(iii) Suppose that (a) holds. We already showed in Lemma 1.3 that every fine measure on $P_\lambda \lambda$ is weakly normal if $\text{cf}(\lambda) < \kappa$. In fact,

Fact 3.6. A fine measure is weakly normal iff its first function maps x to $\sup(x)$. (We denote such a function by Sup.)

When (b) holds, let $\{\lambda_\alpha : \alpha < \delta\}$ be a cofinal subset of λ with $\delta = \text{cf}(\lambda)$ so that $\lambda_\alpha < \lambda_\beta$ if $\alpha < \beta$. Suppose that $\{x \in P_\kappa \lambda : f(x) < \lambda_\alpha\} \notin U$ for all $\alpha < \delta$. Then $\{\xi < \kappa : \{x \in P_\xi \lambda : f(x) < \lambda_\alpha\} \notin U_\xi\} \notin D$ for any $\alpha < \delta$. Hence

$C_\alpha = \{\xi < \kappa : \{x \in P_\xi \lambda : f(x) < \lambda_\alpha\} \notin U_\xi\} \in D^+$.

If $\alpha < \beta$, then $\{x \in P_\beta \lambda : f(x) < \lambda_\beta\} \notin U_\xi$ implies $\{x \in P_\beta \lambda : f(x) < \lambda_\alpha\} \notin U_\xi$ since $\lambda_\alpha < \lambda_\beta$. So, $C_\delta \subset C_\alpha$. Then $C = \bigcap\{C_\alpha : \alpha < \delta\} \neq 0$.

Pick a $\xi \in C$. $\{x \in P_\xi \lambda : f(x) < \lambda_\alpha\} \notin U_\xi$ for any $\alpha < \delta$. This contradicts the hypothesis that U_ξ is weakly normal. □

Note that a filter F on $P_\lambda \lambda$ is weakly normal if it is $\text{cf}(\lambda)$-descendingly complete. Combining Theorems 3.3 and 3.5, we have;

COROLLARY 3.7. There is a weakly normal filter which does not extend $\text{SCF}_{\kappa\lambda}$.

Jech [5] and Carr [3] showed that $\text{CF}_{\kappa\lambda}$ is the minimal normal filter. Is there a nice analogue for weakly normal filter? Or, what is the consistency of weakly normal filters? (Note here we assume that any filter is fine and κ-complete.)
4. Weakly normal fine measures and the RK-ordering. In this section, \(\kappa \) is a fixed strongly compact cardinal. We observe the weak normality in view of the RK-ordering. First we review the fact established by Menas in [8].

Theorem 4.1 (Menas). (i) If \(\text{cf}(\lambda) < \kappa \) or \(\lambda \) is regular, then every normal measure on \(P_\kappa \lambda \) is minimal.

(ii) If \(\lambda \) is regular and the first function of \(U \) is one-to-one on a set of measure one, then \(U \) is minimal.

We hope that every weakly normal measure is minimal as in the theory of uniform ultrafilters on a regular cardinal. In fact any minimal fine measure is isomorphic to a weakly normal measure.

Proposition 4.2. Every fine measure has a weakly normal measure below it.

Proof. Let \(U \) be a fine measure and \(g \) its first function. Define \(f: P_\kappa \lambda \to P_\kappa \lambda \) by \(f(x) = x \cap g(x) \).

By an easy observation, \(\{x: \alpha \in f(x)\} \in U \) for all \(\alpha < \lambda \) and \(f_* (U) \) is a fine measure.

Suppose that \(\{x: f(x) \in x\} \in f_* (U) \). It means that \(\{x: h \circ f(x) \in x \cap g(x)\} \in U \).

Since \(g \) is the first function of \(U \), we have \(\{x: h \circ f(x) < \gamma\} \in U \) for some \(\gamma < \lambda \).

Hence \(\{x: h(x) < \gamma\} \in f_* (U) \). □

The next fact appeared already in [8] implicitly.

Proposition 4.3. Let \(\lambda \) be regular and \(U \) a fine measure on \(P_\kappa \lambda \). \(U \) is minimal iff its first function is one-to-one on a set \(X \in U \).

Proof. Let \(\{A_\lambda (\alpha): \alpha < \lambda\} \) be a partition of \(\{\alpha < \lambda: \text{cf}(\alpha) = \omega\} \) into disjointed stationary subsets. Let \(f \) be the first function and define \(q \) by \(q(x) = \{\alpha < f(x): A_\lambda (\alpha) \cap f(x) \) is stationary in \(f(x)\} \). Then \(q_* (U) \) is a minimal fine measure (Theorem 2.14 in [8]).

Suppose that \(U \) is minimal. \(q \upharpoonright X \) is one-to-one for some \(X \in U \). But \(q(x) = q(y) \) if \(f(x) = f(y) \). Hence \(f \upharpoonright X \) is one-to-one. □

Corollary 4.4. A weakly normal measure on \(P_\kappa \lambda \) with \(\lambda \) regular is minimal iff \(\sup \) is one-to-one on a set of measure one.

A filter \(F \) on a regular cardinal \(\rho \) is called a \(q \)-point if every \(< \rho \) to one function from \(\rho \) to \(\rho \) is one-to-one on a set \(X \in F \). It is known that any filter extending \(CF_\rho \) is a \(q \)-point. \(SCF_{\kappa \lambda} \) also plays a role on the minimality of weakly normal measures.

Proposition 4.5. Let \(\lambda \) be regular. If \(U \) is a minimal fine measure on \(P_\kappa \lambda \) that is not weakly normal, then \(SCF_{\kappa \lambda} \not\in U \).

Proof. Let \(f \) be the first function. By our assumption, there is a set \(X \in U \) so that \(f \upharpoonright X \) is one-to-one and \(f(x) < \sup(x) \) for all \(x \in X \).

Suppose that \(SCF_{\kappa \lambda} \subset U \). Then \(X \) is prestationary. For \(x \in X \), set \(g(x) = \) the least member of \(x \) greater than \(f(x) \). There is an unbounded set \(Y \subset X \) such that \(g^\gamma Y = \{\gamma\} \) for some \(\gamma < \lambda \). Thus, \(f'' Y \subset \gamma \) and \(|Y| = \lambda^{< \kappa} > \gamma \), which contradicts the fact that \(f \upharpoonright Y \) is one-to-one. □
COROLLARY 4.6. Let λ be regular. If U is normal and $f_*(U) \supseteq \text{SCF}_{\kappa\lambda}$, then $f_*(U)$ is weakly normal and $\{x: \sup(f(x)) = \sup(x)\} \in U$.

COROLLARY 4.7. For any regular $\lambda > \kappa$, there is a nonminimal fine measure extending $\text{CF}_{\kappa\lambda}$.

PROOF. Let $A = \{\alpha < \lambda: \text{cf}(\alpha) < \kappa\}$ which is stationary in λ. We repeat the construction in §1.

There is a κ-complete ultrafilter on λ, $D \supseteq \text{CF}_\lambda \cup \{A\}$. For each $\alpha \in A$, fix a fine filter U_α on $P_\kappa\alpha$ extending $\text{CF}_{\kappa\alpha}$, and define U by

$$X \in U \iff \{\alpha < \lambda: X \cap P_\kappa\alpha \in U_\alpha\} \in D.$$

Then U is a fine measure extending $\text{CF}_{\kappa\lambda}$.

We shall see that U is not weakly normal, hence nonminimal by Proposition 4.5.

Since $A \in D$, D is not normal. Thus there is a function g so that $[g]_D = \lambda$ and $\{\alpha < \lambda: g(\alpha) < \alpha\} \in D$.

For $x \in P_\kappa\lambda$, let $\alpha_x = \text{the least } \alpha \text{ such that } x \in P_\kappa\alpha$ and $f(x) = g(\alpha_x)$. For every $\alpha \in A$, $\{x \in P_\kappa\alpha: f(x) < \sup(x)\} \in U_\alpha$ since $\{x: \alpha_x = \alpha = \sup(x)\} \in U_\alpha$. Let $h(x) = \text{the least member of } x \text{ greater than } f(x)$. h is a regressive function on a set in U.

Pick a $\gamma < \lambda$. Then $B = \{\alpha \in A: \gamma < g(\alpha)\} \in D$. For all $\alpha \in B$, $\{x \in P_\kappa\alpha: f(x) = g(\alpha_x) = g(\alpha)\} \in U_\alpha$ and $\{x \in P_\kappa\alpha: f(x) > \gamma\} \in U_\alpha$. Hence $\{x \in P_\kappa\lambda: \gamma < f(x)\} \in U$. It shows that Sup is not the least function. \Box

On the other hand, we have a minimal fine measure which is weakly normal and does not extend $\text{SCF}_{\kappa\lambda}$. We recall the fine measure in §3. Suppose that λ is regular and $\langle U_\alpha|\alpha < \kappa\rangle$ is a sequence of normal measures on $P_\kappa\lambda$ and D is a normal measure on κ. Define U by

$$X \in U \iff \{\alpha < \kappa: X \cap P_\alpha\lambda \in U_\alpha\} \in D.$$

Following the argument of 3.1, 3, 4 in [10], we get

LEMMA 4.8. (i) $\{x: \text{the order type of } x \text{ is regular}\} \subseteq U$.

(ii) Let G be a ω-Jonsson function over λ. (G is ω-Jonsson over y if $G: \omega \rightarrow y$ and $G^nz = y$ whenever $z \subseteq y$ and $|z| = |y|$.) Then we have $\{x: G \upharpoonright \omega x \text{ is } \omega \text{-Jonsson over } x\} \subseteq U$.

(iii) There is an $X \in U$ so that $\text{Sup} \upharpoonright X$ is one-to-one.

Note that normality of U_α's is necessary in the above. Using the results proved in §3, we can show

THEOREM 4.9. For every regular $\lambda > \kappa$, there is a weakly normal minimal fine measure which does not extend $\text{SCF}_{\kappa\lambda}$.

PROOF. It is clear that every normal measure is weakly normal. Hence our U is weakly normal by Theorem 3.5(i). Theorem 3.3 asserts that U does not extend $\text{SCF}_{\kappa\lambda}$. At last U is minimal by Fact 3.6, Theorem 4.1(ii), and Lemma 4.8(iii). \Box

It is not known whether U can be isomorphic to some fine measure extending $\text{SCF}_{\kappa\lambda}$. We also do not know whether nonminimal weakly normal measures exist.
REFERENCES

2. A. Blass, private communication.

FUKUSHIMA COLLEGE OF TECHNOLOGY, TAIRA, KAMIARAKAWA, NAGAO 30 IWAKI, 970 JAPAN