On the monodromy group of everywhere tangent lines to the octic surface in $\textbf {P}^ 3$
HTML articles powered by AMS MathViewer
- by Harry D’Souza
- Proc. Amer. Math. Soc. 104 (1988), 1010-1013
- DOI: https://doi.org/10.1090/S0002-9939-1988-0935106-6
- PDF | Request permission
Abstract:
Let ${S_0}$ be an octic surface in ${{\mathbf {P}}^3},G = G(1,3)$ = Grassmannian of lines in ${{\mathbf {P}}^3}$, and ${\mathbf {J}} = \{ (x,l)|x \in l \cap {S_0}\} \subset {S_0} \times G$. Then $\dim {\mathbf {J}} = 5$. Let ${\mathbf {L}} = {\{ l|l{\text { is }}everywhere{\text { tangent to }}{S_0}\} ^ - } \subset G$. Let ${\pi _2}:{S_0} \times G \to G$ be the projection onto the second factor. We denote its restriction to ${\mathbf {J}}$ also by ${\pi _2}$. Then the locus of everywhere tangent lines is ${\pi _2}({\mathbf {L}})$. In this article we show that the monodromy group of these lines is the full symmetric group.References
- Susan Jane Colley, Coincidence formulas for line complexes, Comm. Algebra 16 (1988), no. 11, 2363–2385. MR 962319, DOI 10.1080/00927878808823695
- Joe Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685–724. MR 552521
- Patrick Le Barz, Quelques calculs dans les variétés d’alignements, Adv. in Math. 64 (1987), no. 2, 87–117 (French). MR 884182, DOI 10.1016/0001-8708(87)90006-5
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1010-1013
- MSC: Primary 14N10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0935106-6
- MathSciNet review: 935106