Alternating procedures in uniformly smooth Banach spaces
HTML articles powered by AMS MathViewer
- by I. Assani
- Proc. Amer. Math. Soc. 104 (1988), 1131-1133
- DOI: https://doi.org/10.1090/S0002-9939-1988-0937842-4
- PDF | Request permission
Abstract:
Let $E$ be a uniformly smooth Banach space and $C$ the set of real continuous strictly increasing functions $\mu$ on ${{\mathbf {R}}_ + }$ such that $\mu (0) = 0$. At each $\mu$ we can associate a unique duality map ${J_\mu }:E \to {E^ * }$ such that $({J_\mu }x,x) = \left \| {{J_\mu }x} \right \| \cdot \left \| x \right \|$ and $\left \| {{J_\mu }x} \right \| = \mu \left ( {\left \| x \right \|} \right )$. We prove in this note that if ${T_n}$ is a sequence of linear contractions on $E$ the sequence $T_1^ * T_2^ * \cdots T_n^ * {J_\mu }{T_n} \cdots {T_2}{T_1}x$ converges strongly in ${E^ * }$ norm for all $x$ in $E$. In particular if ${E^ * }$ is also uniformly smooth then for any $\mu$ and $\nu$ in $C$ the sequence $J_\nu ^ * T_1^ * T_2^ * \cdots T_n^ * {J_\mu }{T_n} \cdots {T_1}x$ converges in $E$ norm. This generalizes a result of M. Akcoglu and L. Sucheston [1].References
- M. A. Akcoglu and L. Sucheston, An alternating procedure for operators on $L_p$ spaces, Proc. Amer. Math. Soc. 99 (1987), no. 3, 555â558. MR 875396, DOI 10.1090/S0002-9939-1987-0875396-0 I. Assani, Pointwise convergence of sequence of operators on $L_E^p$ spaces, (preprint). â, Rotaâs alternating procedure with nonpositive operators, (preprint). J. Diestel, Geometry of Banach spacesâselectred topics, Lecture Notes in Math., vol. 485, Springer-Verlag.
- Gian-Carlo Rota, An âAlternierende Verfahrenâ for general positive operators, Bull. Amer. Math. Soc. 68 (1962), 95â102. MR 133847, DOI 10.1090/S0002-9904-1962-10737-X
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1131-1133
- MSC: Primary 47A35; Secondary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0937842-4
- MathSciNet review: 937842