ON STABILITY OF ENDMORPHISMS

HIROSHI IKEDA

(Communicated by George R. Sell)

ABSTRACT. In this note we prove a generalization of R. Mañé's theorem. R. Mañé proved that C^r absolutely stable endomorphisms satisfy Axiom A. We prove that if an endomorphism f is both C^r structurally and infinitesimally stable, then f satisfies Axiom A.

1. Introduction. This note is a generalization of R. Mañé's theorem on absolute stability [4]. We prove this theorem under weaker hypotheses. Our Theorem is the following

THEOREM. If $f \in \text{End}^r(M)$ is both C^r structurally and infinitesimally stable, then f satisfies Axiom A.

First we establish some background. Let M be a compact connected smooth manifold without boundary and let $\text{End}^r(M)$, $r \geq 1$, be the space of C^r endomorphisms of M endowed with the C^r topology. We say that f is C^r structurally stable if there exists a neighborhood \mathcal{U} of f in $\text{End}^r(M)$ such that for every $g \in \mathcal{U}$ there exists a homeomorphism h of M satisfying $fh = hg$. If $f \in \text{End}^r(M)$, let $\text{Per}(f)$ be the set of all periodic points of f and let $\Omega(f) = \{x \in M\}$ for every neighborhood U of x, there exists $n > 0$ with $f^n(U) \cap U \neq \emptyset$. We denote by $S(f)$ the set of singularities of f, i.e. those points x of M where $Tf|T_xM$ is not injective.

We give two definitions following R. Mañé [4].

DEFINITION. We say that $f \in \text{End}^r(M)$ is C^r absolutely stable if there exist a neighborhood \mathcal{U} of f in $\text{End}^r(M)$ and a constant $K > 0$ such that for all $g \in \mathcal{U}$ there exists a homeomorphism h of M satisfying $gh = hf$ and $d(h, I) \leq Kd(f, g)$ where $d(\cdot, \cdot)$ is defined by $d(f_1, f_2) = \sup\{|\rho(f_1(x), f_2(x))| x \in M\}$, $\rho(\cdot, \cdot)$ being a metric on M and I is the identity map of M.

DEFINITION. We say that $f \in \text{End}^r(M)$ satisfies Axiom A if there exist a continuous splitting $TM|\Omega(f) = E^s \oplus E^u$, and a Riemannian metric $|\cdot|$ on M, and constants $K > 0$, $0 < \lambda < 1$ satisfying:

(a) $(Tf)E^s \subset E^s$, $(Tf)E^u = E^u$;
(b) $|(Tf)^nE^s_x| \leq K\lambda^n$ for $x \in \Omega(f)$, $n > 0$,
(c) $|(Tf)^nE^u_x| \geq K\lambda^{-n}|v|$ for $x \in \Omega(f)$, $v \in E^u_x$, $n > 0$;
(d) if $x_1 \neq x_2 \in \Omega(f)$ and $f(x_1) = f(x_2) = x$, then $E^s_x = \{0\}$;
(e) $S(f) \cap \Omega(f) = \emptyset$.

In [8] the following conjecture was stated.

Received by the editors September 29, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 58F10; Secondary 58F15.
Key words and phrases. Infinitesimal stability, Axiom A, prehyperbolic set, \mathcal{P}-stability.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page
CONJECTURE. If \(f \in \text{End}^r(M) \) is \(C^r \) structurally stable, then \(\Omega(f) \cap S(f) = \emptyset \). In fact, \(\text{Per}(f) \cap S(f) = \emptyset \) holds if \(f \) is \(C^r \) structurally stable, and \(\Omega(f) \cap S(f) = \emptyset \) holds if \(f \) is \(C^r \) absolutely stable. The latter property is a part of the theorem by R. Mañé [4].

Theorem M. \(C^r \) absolutely stable endomorphisms satisfy Axiom A.

On the other hand, F. Przytycki defined Axiom A somewhat different from Mañé’s Axiom A, and found sufficient conditions for \(\Omega \)-stability of an endomorphism [6, 7].

Our Theorem is a generalization of Theorem M.

2. Proof of the Theorem. In this section we will prove our Theorem. To prove the Theorem we need some definitions and lemmas. If \(\Lambda \subset M \) is a compact subset of \(M \) let \(\Gamma^0(\Lambda) \) be the space of bounded sections of \(TM|\Lambda \) with the norm \(||\eta|| = \sup\{||\eta(x)|| | x \in \Lambda\} \) and let \(\Gamma^0(\Lambda) \) be the closed subspace of continuous sections. If \(f \in \text{End}^r(M) \) and \(\Gamma(\Lambda) \subset \Lambda \) let \(T_f M|\Lambda \) be the vector bundle on \(\Lambda \) consisting of couples \((p,v) \) with \(p \in \Lambda, v \in T_f(p)M \). Let \(\Gamma_f(\Lambda), \Gamma_f^0(\Lambda) \) be the corresponding spaces of bounded and continuous sections of \(T_f M|\Lambda \).

We define the linear operator \(L_f: \Gamma^0(\Lambda) \to \Gamma_f^0(\Lambda) \) by

\[
L_f(\eta) = (T_f) \circ \eta - \eta \circ f \quad \text{for } \eta \in \Gamma^0(\Lambda).
\]

Definition. Let \(f \in \text{End}^r(M) \) and let \(\Lambda \subset M \) be a compact subset with \(f(\Lambda) = \Lambda \). We say that \(\Lambda \) is a prehyperbolic set for \(f \) if there exist a continuous splitting \(TM|\Lambda = E^s \oplus E^u \), and a Riemannian metric \(|| \cdot || \) on \(M \) and constants \(K > 0, 0 < \lambda < 1 \) satisfying:

(a) \((T_f)^n E^s \subset E^s \), \((T_f)^n E^u = E^u \);

(b) \[|(T_f)^n E^s_x| \leq K \lambda^n |x| \] for \(x \in \Lambda, n > 0 \); \[|(T_f)^n v| \geq K \lambda^{-n} |v| \] for \(x \in \Lambda, v \in E^u_x, n > 0 \);

(c) if \(x_1 \neq x_2 \in \Lambda \) and \(f(x_1) = f(x_2) = x \), then \(E^s_x = \{0\} \).

We say that \(f \in \text{End}^r(M) \) is infinitesimally stable if the linear operator \(L_f: \Gamma^0(M) \to \Gamma_f^0(M) \) is surjective. It is evident that the absolute stability of \(f \) implies the structural stability of \(f \). Also it is easy to prove that if \(f \in \text{End}^r(M) \) is absolutely stable, then \(f \) is infinitesimally stable by the similar argument for the case of diffeomorphisms in [1]. If \(x \in M \) let \(\omega(x) = \omega(x,f) \) be the set of \(\omega \)-limit points of \(x \) for \(f \) and let \(\overline{L}^+(f) \) be the closure of \(L^+(f) = \{\omega(x)|x \in M\} \).

In the proof of the theorem, we shall use the following two lemmas of [4].

Lemma 1. If \(f \in \text{End}^r(M) \) is infinitesimally stable, then \(\overline{L}^+(f) \) is prehyperbolic.

Lemma 2. Suppose that \(f \in \text{End}^r(M) \) and \(\overline{L}^+(f) \) is prehyperbolic. Then given \(x \in \overline{L}^+(f) \) and a neighborhood \(U \) of \(f \) there exist a neighborhood \(U \) of \(x \) and \(g \in U \) such that:

(a) \(g(y) = f(y) \) for all \(y \in U \);

(b) \(x \in \text{Per}(g) \).

From the argument of R. Mañé [4], it clearly follows that we only need to prove the following proposition in order to prove the Theorem.
Proposition. If \(f \in \text{End}^r(M) \) is both \(C^r \) structurally and infinitesimally stable, then \(\overline{L}^+(f) = \overline{\text{Per}}(f) \).

To prove the Proposition, we introduce the concept of \(P \)-stability. \(P = \overline{\text{Per}}(f) \) will denote the closure of the set of periodic points of \(f \). We say that \(f \in \text{End}^r(M) \) is \(P \)-stable if there exists a neighborhood \(\mathcal{U} \) of \(f \) in \(\text{End}^r(M) \) such that for each \(g \in \mathcal{U} \) there exists a homeomorphism \(h : \overline{\text{Per}}(f) \to \overline{\text{Per}}(g) \) satisfying \(hf = gh \) [5]. It is obvious that the structural stability implies the \(P \)-stability.

Proof of Proposition. We first suppose that \(\overline{\text{Per}}(f) \subseteq \overline{L}^+(f) \). We show that \(\overline{L}^+(f) \cap S(f) = \emptyset \). Suppose that \(x \in \overline{L}^+(f) \cap S(f) \). By Lemmas 1 and 2, we can take \(g \in \text{End}^r(M) \) nearby \(f \) coinciding with \(f \) in a neighborhood of \(x \) (therefore \(x \in S(g) \)) and such that \(x \in \text{Per}(g) \). Hence \(x \in \text{Per}(g) \cap S(g) \). This contradicts the stability of \(g \). Hence \(\overline{L}^+(f) \cap S(f) = \emptyset \). Also it is obvious that \(\overline{\text{Per}}(f) \) is prehyperbolic. Therefore \(\overline{\text{Per}}(f) \) has a decomposition, \(\Lambda_1 \cup \Lambda_2 \cup \cdots \cup \Lambda_n \) into disjoint prehyperbolic sets, following the method of Przytycki [7] and Newhouse [5]. Here each \(\Lambda_i \) is a prehyperbolic set such that the periodic points are dense in \(\Lambda_i \). Let \(U_i \) be a compact neighborhood of \(\Lambda_i \) for \(1 \leq i \leq n \). If we choose \(U_i \) small enough, we have that \(U_i \cap U_j = \emptyset \) if \(i \neq j \) and \(\overline{L}^+(f) \setminus \bigcup_{1 \leq i \leq n} U_i \neq \emptyset \).

Now suppose that \(f|\Lambda_i \) is injective. Then shrinking \(U_i \) if necessary, \(f|U_i \) is a diffeomorphism onto its image. By Theorem 7.3 of [2], there is a neighborhood \(\mathcal{N}_i \) of \(f \) in \(\text{End}^r(M) \) such that \(g \in \mathcal{N}_i \) then there exists a homeomorphism \(h \) close to identity which conjugates \(\Lambda_i \) with a \(g \)-invariant subset of \(U_i \).

Next suppose that \(f|\Lambda_i \) is not injective. Then it is easy to show that \(f|\Lambda_i \) is a (quasi-) expanding map, i.e. \(\dim E^u_x = \dim M \) for any \(x \in \Lambda_i \). By the similar argument to Przytycki [7], there exists a neighborhood \(\mathcal{N}_i \) of \(f \) in \(\text{End}^r(M) \) such that if \(g \in \mathcal{N}_i \) then there exists a homeomorphism \(h \) from \(\Lambda_i \) onto its image satisfying \(gh = hf \) and \(h(\Lambda_i) \subseteq U_i \).

From above arguments and \(P \)-stability of \(f \), it follows that there exists a neighborhood \(\mathcal{N} \) of \(f \) in \(\text{End}^r(M) \) such that \(\overline{\text{Per}}(g) \subseteq \bigcup_{1 \leq i \leq n} U_i \) for any \(g \in \mathcal{N} \). Let \(x \in \overline{L}^+(f) \setminus \bigcup_{1 \leq i \leq n} U_i \). By Lemma 2, there exists \(g \in \mathcal{N} \) such that \(x \) is a periodic point of \(g \). This is a contradiction.

Subsequently we obtain the Corollary of the Theorem:

Corollary. If \(f \in \text{End}^r(M) \) is both \(C^r \) structurally and infinitesimally stable, then \(f \) satisfies Axiom A and no cycle condition.

References

Department of Mathematics, School of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan