Radii problems for sections of convex functions
HTML articles powered by AMS MathViewer
- by Herb Silverman
- Proc. Amer. Math. Soc. 104 (1988), 1191-1196
- DOI: https://doi.org/10.1090/S0002-9939-1988-0942638-3
- PDF | Request permission
Abstract:
A classical theorem of Szegö states that the sections ${f_n}(z) = z + \sum \nolimits _{k = 2}^n {{a_k}{z^k}}$ of a convex function $f(z) = z + \sum \nolimits _{k = 2}^\infty {{a_k}{z^k}}$ must be convex for $\left | z \right | < \frac {1}{4}$. We determine disks $\left | z \right | < {r_n}$ in which ${f_n}$ is starlike and starlike of a positve order. Our proofs rely on some properties of convolutions.References
- A. W. Goodman and I. J. Schoenberg, On a theorem of Szegő on univalent convex maps of the unit circle, J. Analyse Math. 44 (1984/85), 200–204. MR 801293, DOI 10.1007/BF02790196 A. Marx, Untersuchungen über Schlichte Abbildungen, Math. Ann. 107 (1932/33), 40-67.
- G. Pólya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. 8 (1958), 295–334. MR 100753
- M. S. Robertson, The partial sums of multivalently star-like functions, Ann. of Math. (2) 42 (1941), 829–838. MR 4905, DOI 10.2307/1968770
- St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135. MR 328051, DOI 10.1007/BF02566116
- Erich Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), no. 1, 356–380 (German). MR 1545400, DOI 10.1007/BF01474580
- G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928), no. 1, 188–211 (German). MR 1512482, DOI 10.1007/BF01448843
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1191-1196
- MSC: Primary 30C45; Secondary 30C50
- DOI: https://doi.org/10.1090/S0002-9939-1988-0942638-3
- MathSciNet review: 942638