Alternating sequences with nonpositive operators
HTML articles powered by AMS MathViewer
- by M. A. Akcoglu
- Proc. Amer. Math. Soc. 104 (1988), 1124-1130
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943791-8
- PDF | Request permission
Abstract:
Let $({T_n})$ be a sequence of linear operators acting on complex valued functions on a $\sigma$-finite measure space. Assume that each ${T_n}$ contracts all the $p$-norms, $1 \leq p \leq \infty ({\text {i}}{\text {.e}}{\text {.}}{\left \| {{T_n}} \right \|_p} \leq 1)$. It is shown that a.e. ${\lim _n}T_1^ * \cdots T_n^ * {T_n} \cdots {T_1}f$ exists for each ${L_p}$ function $f,1 < p < \infty$.References
- M. A. Akcoglu and A. Brunel, Contractions on $L_{1}$-spaces, Trans. Amer. Math. Soc. 155 (1971), 315–325. MR 276439, DOI 10.1090/S0002-9947-1971-0276439-0
- M. A. Akcoglu and L. Sucheston, Dilations of positive contractions on $L_{p}$ spaces, Canad. Math. Bull. 20 (1977), no. 3, 285–292. MR 458230, DOI 10.4153/CMB-1977-044-4
- M. A. Akcoglu and L. Sucheston, Pointwise convergence of alternating sequences, Canad. J. Math. 40 (1988), no. 3, 610–632. MR 960598, DOI 10.4153/CJM-1988-026-4
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- Gian-Carlo Rota, An “Alternierende Verfahren” for general positive operators, Bull. Amer. Math. Soc. 68 (1962), 95–102. MR 133847, DOI 10.1090/S0002-9904-1962-10737-X
- Norton Starr, Operator limit theorems, Trans. Amer. Math. Soc. 121 (1966), 90–115. MR 190757, DOI 10.1090/S0002-9947-1966-0190757-4
- E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894–1897. MR 131517, DOI 10.1073/pnas.47.12.1894 —, Topics in harmonic analysis, Princeton Univ. Press, 1970.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1124-1130
- MSC: Primary 47A35; Secondary 28D05, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943791-8
- MathSciNet review: 943791