An irreducible not admissible Banach representation of $\textrm {SL}(2,\textbf {R})$
HTML articles powered by AMS MathViewer
- by Wolfgang Soergel
- Proc. Amer. Math. Soc. 104 (1988), 1322-1324
- DOI: https://doi.org/10.1090/S0002-9939-1988-0949881-8
- PDF | Request permission
Abstract:
This weird representation can be constructed by inducing from a solution of the invariant subspace problem.References
- Per Enflo, On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), no. 3-4, 213–313. MR 892591, DOI 10.1007/BF02392260
- C. J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16 (1984), no. 4, 337–401. MR 749447, DOI 10.1112/blms/16.4.337
- C. J. Read, A short proof concerning the invariant subspace problem, J. London Math. Soc. (2) 34 (1986), no. 2, 335–348. MR 856516, DOI 10.1112/jlms/s2-34.2.335
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1322-1324
- MSC: Primary 22E46; Secondary 22E45, 47A15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0949881-8
- MathSciNet review: 949881