FUNCTIONS NOT VANISHING ON TRIVIAL GLEASON PARTS OF DOUGLAS ALGEBRAS

PAMELA GORKIN

(Communicated by John B. Conway)

Abstract. Let B denote a closed subalgebra of L^∞ containing the space of bounded analytic functions. Let $M(B)$ denote the maximal ideal space of B. Let f be a function in B such that f does not vanish on any Gleason part consisting of a single point. We show that if g is a function in B such that $|g| \leq |f|$ on $M(B)$, then $g/f \in B$.

1. Introduction. Let B denote a closed subalgebra of L^∞ containing H^∞. The analytic structure of the maximal ideal space of B, $M(B)$, can be best understood through the work of K. Hoffman. From his work [9, Theorem 4.3] we know that each nontrivial Gleason part of H^∞ is an analytic disk. If such a part is contained in $M(B)$, then the functions in B are holomorphic with respect to the analytic structure of the disk. Thus, we can talk about the order of the zero of f at a point x in $M(B)$. If f vanishes identically on the Gleason part of x, we say that the order of the zero of f at x is infinite. Recently, C. Guillory, K. Izuchi and D. Sarason [8] (see the proof of Corollary 1) showed that if f is a function in $H^\infty + C$ which does not vanish identically on any nontrivial Gleason part of $H^\infty + C$, then f is a product of two functions: one is invertible in $H^\infty + C$ and the other is a finite product of interpolating Blaschke products. From this, they proved a division theorem which was also shown in [3]. Here we generalize both these results to arbitrary closed subalgebras of L^∞. The main result in this paper is the following generalization of Corollary 1 in [8], offering one possible answer to a question raised in [8].

Theorem. Let B be a closed subalgebra of L^∞ containing H^∞. Let f be a function in B such that f does not vanish at any trivial point in $M(B)$. If g is a function in B such that $|g| \leq |f|$ on $M(B)$, then f divides g in B.

By trivial point we mean any point x in $M(B)$ such that $P(x) = \{x\}$.

2. Preliminaries. We let B denote any Douglas algebra, that is, a closed subalgebra of L^∞ containing H^∞. The space $M(B)$ may be identified with a closed subset of $M(H^\infty)$ [11, pp. 64-65]. It is known that each Gleason part of H^∞ is either contained in or disjoint from $M(B)$.

The pseudohyperbolic distance between two points x and y in $M(B)$ is defined to be

$$\rho_B(x, y) = \sup\{|f(y)|: f \in B, ||f||_\infty \leq 1, f(x) = 0\}.$$

If z and w are points in the open unit disk D then $\rho(z, w) = |z - w|/|1 - \bar{w}z|$. For $x \in M(B)$, let $P_B(x) = \{y \in M(B): \rho_B(x, y) < 1\}$ denote the Gleason part of B.

Received by the editors May 5, 1986 and, in revised form, September 29, 1986 and December 29, 1987.

containing x. Using the preceding comments and the Chang-Marshall Theorem [5, 10], one can show that if $x \in M(B)$, then $P_B(x) = P_{H^\infty}(x)$. We will write $P(x)$ for $P_{H^\infty}(x)$. If $x \in M(H^\infty)$, Hoffman constructs an analytic map L_x of D onto $P(x)$. If $P(x)$ is nontrivial, then L_x is one-one.

For a function f in B we let $Z_B(f) = \{x \in M(B): f(x) = 0\}$. In case $f \in H^\infty$, we write $Z(f)$ for $Z_{H^\infty}(f)$. If b is a Blaschke product with zero sequence $\{z_n\}$, then b is an interpolating Blaschke product if

$$\inf_n \prod_{k \neq n} \left| \frac{z_k - z_n}{1 - \overline{z_k}z_n} \right| > 0.$$

Note that

$$(1 - |z_n|^2)|b'(z_n)| = \prod_{k \neq n} \left| \frac{z_k - z_n}{1 - \overline{z_k}z_n} \right|.$$

The Chang-Marshall Theorem [5, 10] states that a Douglas algebra B is generated by H^∞ together with the complex conjugates of the interpolating Blaschke products invertible in B. The closed subalgebra of B containing functions in B whose complex conjugates also lie in B is denoted QB. We let $QA_B = QB \cap H^\infty$. The algebra generated by inner functions invertible in B and their complex conjugates is denoted by C_B. For $t \in M(QB)$ the set $E_t = \{x \in M(L^\infty): x(q) = t(q) \text{ for all } q \in QB\}$ is called a QB level set.

Chang [6] showed that $B = H^\infty + C_B$ and $B \cap \overline{B} = H^\infty \cap \overline{B} + C_B$. We use this to prove a result about weak peak sets. Recall that if X is a compact Hausdorff space and $A \subseteq C(X)$ is a function algebra on X, then a closed set $E \subseteq X$ is a weak peak set for A if for any open neighborhood U of E, there exists $f \in A$ such that $||f|| = 1$, $f|E = 1$ and $|f(x)| < 1$ for $x \in X \setminus U$.

3. Douglas algebras.

Lemma 1. Let $\{m_\alpha\}$ be a net of points in $M(H^\infty)$ converging to m and let $z \in D$. Then $L_{m_\alpha}(z)$ converges to $L_m(z)$.

Proof. See [9, Theorem 4.3].

The following lemma appears in Budde’s Doctoral Dissertation [4] and in Abrams and Weiss’ paper [1].

Lemma 2. Let m be a point in $M(H^\infty)$. Then $\overline{P(m)}$ contains a trivial point.

The proof of Theorem 1, below, depends on Lemma 1, Lemma 2 and the work of Hoffman [9].

Theorem 1. Let B be a Douglas algebra. Let f be an H^∞ function which does not vanish on any trivial Gleason part of $M(B)$. Then $f = uh$, where u is a finite product of interpolating Blaschke products and h is an H^∞ function invertible in B.

Proof. We claim that there is an open set U in $M(H^\infty)$ containing $M(B)$ such that whenever $x \in U \cap Z(f)$, then f has a zero of finite order at x. If this were not true, then for each neighborhood \mathcal{O}_α of $M(B)$ we could find a point $x_\alpha \in \mathcal{O}_\alpha \cap Z(f)$ such that f has a zero of infinite order at x_α. Now $f \circ L_{x_\alpha}$ is analytic on D and has a zero of infinite order at 0. Since L_{x_α} maps D onto $P(x_\alpha)$, we see that f vanishes
on $P(x_\alpha)$. Since $M(H^\infty)$ is compact, we can choose a subnet of $\{x_\alpha\}$ converging to a point x in $M(B)$. Without loss of generality, we may assume $x_\alpha \to x$. We claim that f vanishes on $P(x)$. First note that by our assumptions on f, the point x is nontrivial. By Lemma 1, $L_{x_\alpha}(z) \to L_x(z)$ for all $z \in D$. The definition of weak* convergence implies that $f(L_{x_\alpha}(z)) \to f(L_x(z))$ for all $z \in D$. Thus, $f \circ L_x$ vanishes on D. Since L_x maps D onto P_x, we see that f must vanish on $P(x)$. By the comments preceding the proof of Lemma 1, we know that $P(x) \subseteq M(B)$. By Lemma 2, f must vanish at a trivial point in $P(x)$. This is impossible. Hence such a set U exists. Let V be an open set in $M(H^\infty)$ satisfying

$$M(B) \subseteq V \subseteq \overline{V} \subseteq U,$$

and let b_1 be the Blaschke product having $Z(f) \cap D \cap V$ as zero set (with the order of the zero equal to that of the zero of f). Write $f = bk$, where b is a Blaschke product and k is an H^∞ function that has no zeros on D. We shall show that k is invertible in B. To this end, let $x \in M(B)$. Now k has roots of all orders. Thus if $x(k) = 0$, then k has a zero of infinite order at x. Hence k vanishes on $P(x)$. Again using Lemma 2 and the comments preceding the proof of Lemma 1, we see that this would force k to vanish on a trivial point in $M(B)$. Hence k is invertible in $M(B)$.

Let $b_2 = b/b_1$. If $x \in M(B)$ is such that $x(b_2) = 0$, then $x(f) = 0$. Now $x \in M(B) \subseteq V$, so f (hence b_2) has a zero of finite order at x. Thus $[9, \text{Theorem 5.3}]$ x lies in the closure of an interpolating subsequence of the zero sequence of b_2. But $Z(b_2) \cap D \subseteq M(H^\infty) - V$ and $x \in V$, which is impossible. Thus b_2k is invertible in B.

Finally, consider b_1. Let $\{z_k\}$ denote the zero sequence of b_1. Let N_k denote the number of zeros of b_1 a pseudohyperbolic distance less than $\frac{1}{2}$ from z_k. If N_k were unbounded, there would exist a subsequence of $\{z_k\}$ along which N_k tends to ∞. Using the lower semicontinuity of ρ on $M(H^\infty) \times M(H^\infty)$ $[9, \text{Theorem 6.2}]$, one can show that b_1 would have to vanish identically on any part containing a cluster point of this subsequence. But any cluster point of $\{z_k\}$ would lie in \overline{V}, hence in U. Thus N_k is bounded. Decompose the zero sequence of b_1 into finitely many sequences such that the terms of each sequence are at a pseudohyperbolic distance of at least $\frac{1}{2}$ from the other terms of the (same) sequence. Form the Blaschke products corresponding to these sequences. Then b_1 is a product of these (finitely many) Blaschke products. We claim that each of these factors of b_1 is an interpolating Blaschke product. Let c denote one of these factors. We shall first show that if $x \in U$ and $x(c) = 0$, then c has a zero of order 1 at x. If this were not true, we could factor $c = c_1c_2$ with both c_1 and c_2 vanishing at x. Both c_1 and c_2 have zeros of finite order at x. By $[9, \text{Theorem 5.3}]$, x lies in the closure of interpolating subsequences of $Z(c_1) \cap D$ and $Z(c_2) \cap D$. By $[9, \text{Theorem 6.1}]$ the pseudohyperbolic distance between $Z(c_1) \cap D$ and $Z(c_2) \cap D$ must be zero. By our choice of the factors of b, this is impossible. Now suppose that c is not interpolating. Let $\{z_{n_k}\}$ be a subsequence of the zero sequence of c such that $(1 - |z_{n_k}|^2)c'(z_{n_k}) \to 0$. Let $x \in \{z_{n_k}\}$. Then $x \in U$. Let $\{z_{n_\alpha}\}$ be a subnet of $\{z_{n_k}\}$ such that $z_{n_\alpha} \to x$. By Lemma 1, $\hat{\epsilon} \circ L_{z_{n_\alpha}} \to \hat{\epsilon} \circ L_x$ pointwise boundedly on D. Hence $(\hat{\epsilon} \circ L_{z_{n_\alpha}})'(0) \to (\hat{\epsilon} \circ L_x)'(0)$. But $(\hat{\epsilon} \circ L_{z_{n_\alpha}})'(0) = (1 - |z_{n_\alpha}|^2)c'(z_{n_\alpha})$. Thus $(\hat{\epsilon} \circ L_x)'(0) = 0$, which contradicts the fact that c has a zero of order 1 at x.

Thus there exists $\delta > 0$ such that $\inf_{z_n \in Z(c) \cap D} (1 - |z_n|^2)|c'(z_n)| \geq \delta$. Therefore c is interpolating. Let $u = b_1$ and $h = b_2 k$. Then $f = uh$, where u is a finite product of interpolating Blaschke products, and h is an H^∞ function invertible in B.

To prove the main result of this paper, we need to use some facts about level sets of Douglas algebras.

Lemma 3. Let B be a Douglas algebra. Let E be a QB level set. Then $H^\infty|E = B|E$.

Proof. By [6], $B = H^\infty + QB$. Thus

$$H^\infty|E = (H^\infty + QB)|E = B|E.$$

It is well known [7, p. 60] that if E is a QB level set, then E is a weak peak set for B. Hence $B|E$ is closed (see [7, pp. 56-60]). By Lemma 3, $H^\infty|E$ is closed. Note that this forces E to be a weak peak set for H^∞ [7, p. 65, Exercise 14]. Let $H^\infty_E = \{f \in L^\infty : f|E \in H^\infty|E\}$. Since $H^\infty|E$ is closed, H^∞_E is a Douglas algebra. Furthermore [7, p. 39, 2, p. 17] $M(H^\infty_E) = M(L^\infty) \cup M(H^\infty|E)$. To prove the main result, we shall first prove it in the case where $B = H^\infty_E$ and E is a weak peak set for H^∞.

Lemma 4. Let E be a weak peak set for H^∞. Let f be a function in H^∞_E which does not vanish on any trivial part of $M(H^\infty_E)$. Let g be a function in H^∞_E such that $|g| \leq |f|$ on $M(H^\infty_E)$. Then f divides g in H^∞_E.

Proof. By the definition of H^∞_E, there exists $h \in H^\infty$ such that $h|E = f|E$. To apply Theorem 1 to h, we need to know that h does not vanish on any trivial part of $M(H^\infty_E)$. If $x \in M(H^\infty|E)$, then [7, p. 39] there is a representing measure for x supported on E. Hence $x(f) = x(h)$. As in the proof of Theorem 1, it follows from Lemma 2 that the outer factor d of h has the property that $d|E$ is invertible in $H^\infty|E$. Let I be the inner factor of h. Then I does not vanish on any trivial part of $M(H^\infty|E) \cup M(L^\infty) = M(H^\infty_E)$. Applying Theorem 1, we may write $I = b k$, where b is a finite product of interpolating Blaschke products and k is invertible in H^∞_E. Since I is invertible in L^∞, replacing g by εg for a small positive constant ε, we may assume that $|g| \leq |I|$ on $M(H^\infty_E)$. By [3, Lemma 3 or 8], I divides g in H^∞_E. Since g is invertible in L^∞, $g/f \in L^\infty$. Since $f|E = h|E$, we have $g/f|E = g/h|E = (g/I)(1/d)|E \in H^\infty|E$. Thus f divides g in H^∞_E.

The proof of the main result of this paper will follow easily from Lemma 4 and Shilov’s Theorem [7, p. 60].

Theorem 2. Let B be a Douglas algebra. Let f be any function in B which does not vanish on any trivial Gleason part of $M(B)$. Let g be a function in B such that $|g| \leq |f|$ on $M(B)$. Then f divides g in B.

Proof. Let E be a QB level set. By Lemma 3, $f|E \in H^\infty|E$ and $g|E \in H^\infty|E$. By [7, p. 39] if $x \in M(H^\infty|E)$, then $x \in M(B)$. Hence $|g| \leq |f|$ on $M(H^\infty_E)$. By Lemma 4, $g/f|E \in H^\infty|E = B|E$. Since this holds for every QB level set E, by Shilov’s theorem [7, p. 60] $g/f \in B$ as desired.

It is easy to see from what has been done here that, if g is a function in B such that every zero of f is a zero of g of at least as high an order, then f divides g in
Let f be a unimodular function in B such that f does not vanish identically on any nontrivial part in $M(B)$. If g is a function in B such that every zero of f is a zero of g of at least as high an order, then g is divisible by f in B.

Let f be a function in $H^\infty + C$. Then f vanishes on a nontrivial part in $M(H^\infty + C)$ if and only if f vanishes on a trivial part. It is not known whether this is true in an arbitrary Douglas algebra B.

I thank K. Izuchi for simplifying the proof of Lemma 3 and for several helpful comments. I also thank H. Hedenmalm for helpful discussions.

BIBLIOGRAPHY

Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837