An inequality for some nonnormal operators
HTML articles powered by AMS MathViewer
- by Takayuki Furuta
- Proc. Amer. Math. Soc. 104 (1988), 1216-1217
- DOI: https://doi.org/10.1090/S0002-9939-1988-0969053-0
- PDF | Request permission
Abstract:
An inequality of use in testing convergence of eigenvector calculations is improved. If ${e_\lambda }$ is a unit eigenvector corresponding to an eigenvalue $\lambda$ of a dominant operator $A$ on a Hilbert space $H$, then \[ |(g,{e_\lambda }){|^2} \leq \frac {{||g|{|^2}||Ag|{|^2} - |(g,Ag){|^2}}}{{||(A - \lambda I)g|{|^2}}}\] for all $g$ in $H$ for which $Ag \ne \lambda g$. The equality holds if and only if the component of $g$ orthogonal to ${e_\lambda }$ is also an eigenvector of $A$. This result is an improvement of Bernstein’s result for selfadjoint operators.References
- Herbert J. Bernstein, An inequality for selfadjoint operators on a Hilbert space, Proc. Amer. Math. Soc. 100 (1987), no. 2, 319–321. MR 884472, DOI 10.1090/S0002-9939-1987-0884472-8
- Göran Björck and Vidar Thomée, A property of bounded normal operators in Hilbert space, Ark. Mat. 4 (1963), 551–555. MR 149308, DOI 10.1007/BF02591603
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1216-1217
- MSC: Primary 47A30; Secondary 47B20, 65J10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0969053-0
- MathSciNet review: 969053