Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Cofinal families of compacta in separable metric spaces
HTML articles powered by AMS MathViewer

by Fons van Engelen
Proc. Amer. Math. Soc. 104 (1988), 1271-1273
DOI: https://doi.org/10.1090/S0002-9939-1988-0969060-8

Abstract:

We show that if $X$ is a $\Pi _1^1$-set, then the family of compact subsets of $X$ contains a cofinal (w.r.t. inclusion) subset of cardinality ${\mathbf {d}}$; the same is true if $X$ is $\Pi _3^1$, under strong set-theoretic hypotheses.
References
  • Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622
  • A. J. M. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tract, vol. 27, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1986. MR 851765
  • Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
  • K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
  • N. Luzin and W. Sierpiñski, Sur quelques propriétés des ensembles (A), Bull. Int. Acad. Sci. Cracovie Série A Sci. Math, (1918), 35-48.
  • Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
  • John R. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980), no. 2, 83–88. MR 594307, DOI 10.4064/fm-108-2-83-88
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H05
  • Retrieve articles in all journals with MSC: 54H05
Bibliographic Information
  • © Copyright 1988 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 104 (1988), 1271-1273
  • MSC: Primary 54H05
  • DOI: https://doi.org/10.1090/S0002-9939-1988-0969060-8
  • MathSciNet review: 969060