The existence of $K(\pi , 1)\;4$-manifolds which are rational homology $4$-spheres
HTML articles powered by AMS MathViewer
- by Feng Luo
- Proc. Amer. Math. Soc. 104 (1988), 1315-1321
- DOI: https://doi.org/10.1090/S0002-9939-1988-0969062-1
- PDF | Request permission
Abstract:
We construct rational homology $4$-sphere manifolds with contractible universal cover.References
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- Mark D. Meyerson, Representing homology classes of closed orientable surfaces, Proc. Amer. Math. Soc. 61 (1976), no. 1, 181–182 (1977). MR 425967, DOI 10.1090/S0002-9939-1976-0425967-3
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 104 (1988), 1315-1321
- MSC: Primary 57N13; Secondary 55P20, 57R19
- DOI: https://doi.org/10.1090/S0002-9939-1988-0969062-1
- MathSciNet review: 969062