A note on quasicentral approximate units in $B(H)$
HTML articles powered by AMS MathViewer
- by John L. Orr
- Proc. Amer. Math. Soc. 105 (1989), 149-150
- DOI: https://doi.org/10.1090/S0002-9939-1989-0929408-8
- PDF | Request permission
Abstract:
If a Hilbert Space, $H$, is infinite dimensional, $B(H)$ has no countable quasicentral approximate unit for the ideal of finite rank operators.References
- Charles A. Akemann and Gert K. Pedersen, Ideal perturbations of elements in $C^*$-algebras, Math. Scand. 41 (1977), no. 1, 117–139. MR 473848, DOI 10.7146/math.scand.a-11707
- William Arveson, Notes on extensions of $C^{^*}$-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137
- William Arveson, Perturbation theory for groups and lattices, J. Funct. Anal. 53 (1983), no. 1, 22–73. MR 715546, DOI 10.1016/0022-1236(83)90045-9
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 149-150
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0929408-8
- MathSciNet review: 929408