Weak conditions for generation of cosine families in linear topological spaces
HTML articles powered by AMS MathViewer
- by Michiaki Watanabe
- Proc. Amer. Math. Soc. 105 (1989), 151-158
- DOI: https://doi.org/10.1090/S0002-9939-1989-0929411-8
- PDF | Request permission
Abstract:
Let $A$ be a closed linear operator in a Banach space $X$. Weak conditions are found under which (I) the abstract Cauchy problem in $X$: \[ u''\left ( t \right ) = Au\left ( t \right ),\quad t \in R;\quad u\left ( 0 \right ) = {u_0},\quad u’\left ( 0 \right ) = {u_1}\] has a unique solution for each ${u_0}$ and ${u_1}$ given in a dense subset $Y$ of $X$, and (II) the set $Y$ becomes a linear topological space where $A{|_Y}$ generates a continuous cosine family. The conditions are satisfied for example by the generator of a strongly continuous or holomorphic semigroup in $X$.References
- Richard Beals, Semigroups and abstact Gevrey spaces, J. Functional Analysis 10 (1972), 300–308. MR 0361913, DOI 10.1016/0022-1236(72)90028-6
- Richard Beals, Hyperbolic equations and systems with multiple characteristics, Arch. Rational Mech. Anal. 48 (1972), 123–152. MR 344695, DOI 10.1007/BF00250429
- G. Da Prato and E. Giusti, Una caratterizzazione dei generatori di funzioni coseno astratte, Boll. Un. Mat. Ital. (3) 22 (1967), 357–362 (Italian). MR 0240672
- H. O. Fattorini, Ordinary differential equations in linear topological spaces. I, J. Differential Equations 5 (1969), 72–105. MR 277860, DOI 10.1016/0022-0396(69)90105-3
- H. O. Fattorini, Ordinary differential equations in linear topological spaces. II, J. Differential Equations 6 (1969), 50–70. MR 277861, DOI 10.1016/0022-0396(69)90117-X
- Jerome A. Goldstein, Semigroups and second-order differential equations, J. Functional Analysis 4 (1969), 50–70. MR 0254668, DOI 10.1016/0022-1236(69)90021-4
- Alberto Guzman, Growth properties of semigroups generated by fractional powers of certain linear operators, J. Functional Analysis 23 (1976), no. 4, 331–352. MR 0428104, DOI 10.1016/0022-1236(76)90060-4
- J. Kisyński, On cosine operator functions and one-parameter groups of operators, Studia Math. 44 (1972), 93–105. MR 312328, DOI 10.4064/sm-44-1-93-105
- M. Sova, Cosine operator functions, Rozprawy Mat. 49 (1966), 47. MR 193525
- Michiaki Watanabe, Cosine families of operators and applications, Differential equations in Banach spaces (Bologna, 1985) Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 278–292. MR 872534, DOI 10.1007/BFb0099200
- Atsushi Yagi, Applications of the purely imaginary powers of operators in Hilbert spaces, J. Funct. Anal. 73 (1987), no. 1, 216–231. MR 890664, DOI 10.1016/0022-1236(87)90066-8
- Kôsaku Yosida, An operator-theoretical integration of the wave equation, J. Math. Soc. Japan 8 (1956), 79–92. MR 107085, DOI 10.2969/jmsj/00810079
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 151-158
- MSC: Primary 47D05; Secondary 34G10, 35L99
- DOI: https://doi.org/10.1090/S0002-9939-1989-0929411-8
- MathSciNet review: 929411