Analytic continuation of Archimedean Whittaker integrals
HTML articles powered by AMS MathViewer
- by Stephen Rallis and David Soudry
- Proc. Amer. Math. Soc. 105 (1989), 42-51
- DOI: https://doi.org/10.1090/S0002-9939-1989-0929417-9
- PDF | Request permission
Abstract:
We prove the analytic continuation of a certain family of Whittaker Archimedean integrals that arise as local factors of global $L$-functions associated to the standard representation of certain classical groups.References
- A. N. Andrianov, On zeta-functions of Rankin type associated with Siegel modular forms, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977, pp. 325–338. MR 0491514
- I. Piatetski-Shapiro and S. Rallis, A new way to get Euler products, J. Reine Angew. Math. 392 (1988), 110–124. MR 965059, DOI 10.1515/crll.1988.392.110
- Nolan R. Wallach, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 287–369. MR 727854, DOI 10.1007/BFb0071436
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 42-51
- MSC: Primary 22E45; Secondary 11F70, 22E50
- DOI: https://doi.org/10.1090/S0002-9939-1989-0929417-9
- MathSciNet review: 929417