ON THE PERIODIC POINTS OF A TYPICAL CONTINUOUS FUNCTION

K. SIMON

(Communicated by R. Daniel Mauldin)

Abstract. Let n and k be arbitrary natural numbers. We prove that for a typical continuous function f, every neighborhood of any periodic point of f with period n contains periodic points of f with period $n \cdot k$.

The purpose of this paper is to examine the structure of the set of periodic points of typical continuous functions. We shall denote by C the set of continuous functions mapping the interval $[0,1]$ into itself. This set becomes a metric space with the supremum metric. By the term "typical continuous function" we mean that the set of all functions having the property under consideration is a residual subset of the metric space C.

In [1] S. J. Agronsky, A. M. Bruckner, and M. Laczkovich proved that for a typical continuous function f any neighborhood of a periodic point contains periodic points of arbitrarily large periods. In this paper we prove that this result is true if "arbitrarily large periods" is replaced by "period $k \cdot n$ ($k = 1, 2, \ldots$)" (Theorem 1). As a consequence, for a typical continuous f we have that P^n_f, the set of periodic points with period n, is uncountable, dense in itself, but not closed. Also, P^n_f is a residual subset of $\text{Fix}(f^n)$.

In [1] it is proved that, for a typical continuous f, $\text{Fix}(f^n)$ is nowhere dense and perfect. In this paper we prove (Theorem 2) that $\text{Fix}(f^n)$ is bilaterally strongly Φ-porous. For $f \in C$ and $n \in \mathbb{N}$ we define $f^n(x)$ by $f^1(x) = f(x)$ and $f^n(x) = f(f^{n-1}(x))$. P^n_f denotes the set of periodic points of f with period n. We denote $\text{Fix}(f^n) = \{x : f^n(x) = x\}$; then $P^n_f = \text{Fix}(f^n) \setminus \bigcup_{k \neq n} \text{Fix}(f^k)$. In particular P^n_f is a relatively open subset of $\text{Fix}(f^n)$. For $f \in C$ and $\epsilon > 0$ denote

$$B(f, \epsilon) = \{g \in C : \|f - g\| < \epsilon\}.$$

Theorem 1. Let $n, k \in \mathbb{N}$ be arbitrary. Then for a typical continuous function f, every neighborhood of any periodic point of f with period n contains periodic points of f with period $n \cdot k$.

Received by the editors August 3, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 54H20; Secondary 26A18.
Proof. Fix $n \in \mathbb{N}$. Let $A_0 = \{ f \in C : \text{Fix}(f^n) \text{ nowhere dense} \}$ and $A_i = \{ f \in C : \text{every neighborhood of any periodic point of } f \text{ with period } i \text{ contains, for every } m \in \mathbb{N}, \text{ periodic points of } f \text{ with period } m \cdot i \}$ $(i = 1, 2, \ldots)$.

We prove by induction that each A_i is residual. In [1] it is proved that the set A_0 is a residual subset of C. Assume that $\bigcap_{0 \leq i < n} A_i$ is a residual subset of C. We shall prove that A_n is also residual. If $f \in \bigcap_{0 \leq i < n} A_i$ and I is an arbitrary open interval then $P^n_f \cap I = \emptyset$ implies $\text{Fix}(f^n) \cap I = \emptyset$. For $k \in \mathbb{N}$ and $\epsilon > 0$ we define the set of Q_k^ϵ by

$$Q_k^\epsilon = \{ f \in C : \text{for any } x_0 \in P^n_f \text{ there is } x \in P^{k\cdot n}_f \text{ such that } |x - x_0| < \epsilon \}. $$

It will be sufficient to show that each Q_k^ϵ contains a set which is open and dense. Let $f \in \bigcap_{0 \leq i < n} A_i$ and let $\epsilon' > 0$ be arbitrary. We prove that there exist $g \in B(f, \epsilon')$ and $\eta > 0$ such that $B(g, \eta) \subset Q_k^\epsilon$. Let $\{ a_i \}_{i=0}^l \subset [0, 1] \setminus \text{Fix}(f^n)$ be a finite sequence such that $a_0 = 0$, $a_l = 1$ and $0 < a_{i+1} - a_i < \epsilon$ for every $0 \leq i < l$. Put $J_i = [a_{i-1}, a_i]$ $(i = 1, \ldots, l)$. Choose a finite sequence $\{ b_j \}_{j=1}^z \subset P^n_f$ as follows: if $J_i \cap P^n_f \neq \emptyset$ $(i = 1, \ldots, l)$ then there should exist an $x_0 \in J_i \cap P^n_f$ such that the sequence $\{ a_i \}_{i=0}^l$ contains the orbit of x_0. Let $z' = z/n$. We can choose b_1, b_2, \ldots, b_z so that they are contained in different orbits. Choose $\eta_1 \in \mathbb{R}$ so that

(i) $\eta_1 > 0$,

(ii) $\eta_1 < \frac{1}{2} \cdot \min_{0 < i < j < l} \{ |a_i - a_j|, |b_j - b_j|, |a_i - b_j| \}$,

(iii) $\eta_1 < \epsilon'/3$, and

(iv) if for some i $J_i \cap P^n_f = \emptyset$ and $\|g - f\| < 3\eta_1$ then $J_i \cap P^n_g = \emptyset$.

This is possible since $f \in \bigcap_{i<n} A_i$. Let $0 < u < \eta_1$ be such that if $|x - y| < u$ then $|f(x) - f(y)| < \eta_1$. Then $[b_i - u/2, b_i + u/2] \cap [b_j - u/2, b_j + u/2] = \emptyset$ for every $1 \leq i < j \leq z$.

We can now define the function $g \in C$. First we define g on

$$\bigcup_{i=1}^{z'} [f^i(b_m) - u/2, f^i(b_m) + u/2] \quad (m = 1, \ldots, z')$$

using the following procedure. Let $1 \leq m \leq z'$ be fixed but arbitrary and take $x_0 = b_m$. Put $I_j = [f^{j-1}(x_0) - u/2, f^{j-1}(x_0) + u/2]$. Let us define g on the set $\bigcup_{j=1}^{z'} I_j$ so that the graph of g on this set will be included in the squares $E_j = I_j \times I_{j+1}$ (see Figure 1). If $j > 1$ then let the graph of g in E_j be the increasing diagonal of E_j. (See Figure 1.) Let x_1, \ldots, x_k, $x_{k+1} = x_1$ be distinct points in $(0, u)$ and let the point W_i be defined by $W_i = (x_i, x_{i+1})$ $(i = 1, \ldots, k)$; then $W_i \in L = [0, u] \times [0, u]$. Let $v = \min_{i \neq j} \frac{1}{2}|x_i - x_j|$ and define

$$B_i = \left[x_i - \frac{v}{2}, x_i + \frac{v}{2} \right] \times \left[x_{i+1} - \frac{v}{2}, x_{i+1} + \frac{v}{2} \right].$$
Let \(h : [0, u] \to [0, u] \) be piecewise linear and continuous such that the graph of \(h \) in each \(B_i \) is the diagonal of \(B_i \), if \(1 \leq i < k \) then \(h \) is increasing in \(B_i \) but \(h \) is decreasing in \(B_k \). (See Figure 2.)

It is easy to see that if \(\eta = \nu / 10 \) and \(q \in B(h, \eta) \) then \(q \) has periodic points of period \(k \) in the interval \((x_i - u/2, x_i + u/2)\). Now we define the graph of \(g \) on \(I_1 \) by translating the graph of \(h \) into \(E_1 \) (using the translation that maps \(L \) onto \(E_1 \)). Thus we have defined \(g \) on \(\bigcup_{i=1}^{l} [b_i - u/2, b_i + u/2] \). Put \(g(a_i) = f(a_i) \) (\(i = 0, 1, \ldots, l \)). If \(J_i \cap P^n_f = \emptyset \) then let \(g|_{J_i} = f|_{J_i} \). For those \(x \)'s for which \(g \) has not yet been defined, let us define \(g \) so that \(\|f - g\| < \eta_1 \); by the definition of \(u \) this is possible. Now if \(P^n_f \cap J_i = \emptyset \) then \(P^n_g \cap J_i = \emptyset \) or else \(P^{n+k}_g \cap J_i \neq \emptyset \). Thus \(g \in B(f, \epsilon') \cap Q^e_k \) and it is easy to see that if \(\eta = \nu / 10 \) then \(B(g, \eta) \subset B(f, \epsilon') \cap Q^e_k \). It follows that \(Q^e_k \) contains
an open dense set, and since $\bigcap_{k} Q_k^e \subset A$ we have that A is a residual subset of C. This completes the proof of the theorem.

We show that, for a typical continuous f, P^k_f is a dense relatively open subset of $\text{Fix}(f^k)$ from which it will follow that, P^k_f is a residual subset of $\text{Fix}(f^k)$ and P^k_f is uncountable.

Corollary 1. For a typical continuous f, P^k_f is a dense relatively open subset of $\text{Fix}(f^k)$.

Proof. If $x \in \text{Fix}(f^k)$ then there is q_k such that $x \in P^q_f$. It follows from Theorem 1 that any neighborhood of x contains periodic points with period $q \cdot k/q$. As we have seen in the introduction, P^k_f is relatively open in $\text{Fix}(f^k)$.

Corollary 2. For a typical continuous f, P^k_f is not closed for every $k > 1$.

Proof. It follows from Theorem 1 that for every $x \in \text{Fix}(f)$, $x \in \text{cl}(P^k_f)$ and $x \notin P^k_f$.

Corollary 3. For a typical continuous f, P^k_f is dense in itself.

Proof. Since, for a typical f, $\text{Fix}(f^k)$ is dense in itself [1], the statement follows from Corollary 1.
Remark. For a typical f there is $x \in \text{Fix}(f^n)$ such that in a suitable neighborhood of x, the periods of the periodic points are all multiples of n. Moreover, this is true for the points of a residual subset of $\text{Fix}(f^n)$. Indeed, let $f \in C$ and $I_0 \subset [0, 1]$ be an open interval and let $I_k = f^k(I_0)$. Define $P^n_k(f) = \{I_0: \text{ for every } 0 \leq 1 \neq j \leq k - 1, I_i \cap I_j = \emptyset \text{ and } I_n \subset I_0 \text{ and } \min\{|I_0|, \ldots, |I_n|\} < 1/k\}$. (See [1, Proposition 1].)

In [1] the authors proved that for a typical continuous function f, $\text{Fix}(f^n) \cap \bigcap_{k=1}^{\infty} G^n_k$ is a residual subset of $\text{Fix}(f^n)$. Put $B^n_f = \{x \in P^n_f: \text{ there is } V \text{ neighborhood of } x \text{ such that for any periodic point } y \in V \text{ there is } k \text{ such that that period of } y \text{ equal to } n \cdot k\}$. It is easy to see $P^n_f \cap \bigcap_{k=1}^{\infty} G^n_k \subset B^n_f$ and therefore B^n_f is a residual subset of $\text{Fix}(f^n)$.

In [1] it is proved that for a typical continuous f the set $\text{Fix}(f^k)$ is nowhere dense and perfect. In Theorem 2 we shall prove that for every porosity premeasure (i.e., a continuous map $\Phi: (0, 1] \rightarrow (0, 1]$), $\text{Fix}(f^k)$ is bilaterally strongly Φ-porous for a typical continuous f. This means that for every $x \in \text{Fix}(f^k)$ there are sequences of intervals $\{I_n\}_{n=1}^{\infty}$ and $\{J_n\}_{n=1}^{\infty}$ such that $I_n \subset (x - 1/n, x) \setminus \text{Fix}(f^k)$, $J_n \subset (x, x + 1/n) \setminus \text{Fix}(f^k)$ and

$$\lim_{n \to \infty} \frac{\text{dist}(x, I_n)}{\Phi(|I_n|)} = \lim_{n \to \infty} \frac{\text{dist}(x, J_n)}{\Phi(|J_n|)} = 0.$$

We shall apply the method used by P. Humke and M. Laczkovich in [2] to this problem.

The pair of sequences (α, β) is said to be proper if $\alpha = \{\alpha_n\}_{n=1}^{\infty}$, $\beta = \{\beta_n\}_{n=1}^{\infty}$ and $\beta_n \to 0$ and $0 < \alpha_n < \beta_n$. If (α, β) is a proper pair of sequences then the sequence $x = \{x_n\}_{n=1}^{\infty}$ is called an (α, β)-sequence if $x_n \rightarrow x_0$ and $x_n - x_0 \leq \beta_n$ for each $n \in \mathbb{N}$. Let the natural number $l > 1$ and the proper pair (α, β) be fixed. (See [2, p. 245].) Put

$$B_N = \{f \in C: \text{ there is } \{x_i\}_{i=1}^{\infty}((\alpha, \beta)\text{-sequence such that } f^l(x_i) = x_i \text{ if } i \geq N\}.$$

Lemma. B_N is nowhere dense.

Proof. First we shall prove that B_N is closed. Let $\{f_k\}_{k=1}^{\infty} \subset B_N$ and $f_k \rightarrow f$ in C. Thus, for every fixed k there is a sequence $x^k = \{x^k_n\}_{n=1}^{\infty}$ converging to x^0_k such that x^0_k is an (α, β)-sequence and $f^0_k(x^0_k) = x^0_k$ if $i \geq N$. Using a diagonal procedure we obtain a subsequence $\{k_i\}_{i=1}^{\infty}$ such that for every n there is x^*_n such that $\{x^k_{n_i}\}_{i=1}^{\infty} \rightarrow x^*_n$ and $x^* = \{x^*_n\}_{n=1}^{\infty}$ is a (α, β)-sequence. As $\{f_{k_i}\}_{i=1}^{\infty} \rightarrow f$ in C and since for $n > N$ $f_{k_i}^l(x^k_{n_i}) = x^k_{n_i}$ it follows that $f^l(x^*_n) = x^*_n$ if $n > N$.

If p is a polynomial then $\{x: p^l(x) = x\}$ is finite and hence $p \notin B_N$. Since the set of polynomials is dense in C, the complement of B_N is dense and, as B_N is closed, B_N is nowhere dense.

Let $\Phi: (0, 1] \rightarrow (0, 1]$ be continuous arbitrary fixed.
Theorem 2. For a typical continuous \(f \), \(\text{Fix}(f^l) \) is bilaterally strongly \(\Phi \)-porous set.

Proof. Let \((\alpha, \beta) \) be such that \(\alpha_n = \beta_{n+1}, \beta_n < 1/n \) and \(\Phi(\beta_n - \beta_{n+1}) \geq n\beta_{n+1} \). Let \(M = \{x: f^l(x) = x\} \). If \(f \in \bigcup_n B_n \) then for each \(x \in M \) there is a sequence \(\{n_i\} \to \infty \) such that \(M \cap [x + \alpha_n, x + \beta_n] = \emptyset \). Let \(J_i = [x + \alpha_n, x + \beta_n] \). Thus \(J_i \subset (x, x + 1/i) \backslash M \) and

\[
\text{dist}(x, J_i) = \alpha_{n_i} = \beta_{n_i+1} < \frac{\Phi(\beta_{n_i} - \beta_{n_i+1})}{n_i} = \frac{\Phi(|J_i|)}{n_i}
\]

and hence

\[
\lim_{n \to \infty} \frac{\text{dist}(x, J_i)}{\Phi(|J_i|)} = 0.
\]

Using a similar procedure we can find a sequence \(\{I_i\}_{i=1}^\infty \) such that

\[
I_i \subset (x - 1/i, x) \backslash M \quad \text{and} \quad \lim_{i \to \infty} \frac{\text{dist}(x, I_i)}{\Phi(|I_i|)} = 0.
\]

This completes the proof of the theorem.

Acknowledgment
The author would like to thank Miklós Laczkovich for his useful advice.

References

Department of Mathematics, Technical University, Miskolc, Hungary