The geometry of the hyperelliptic involution in genus two
HTML articles powered by AMS MathViewer
- by Andrew Haas and Perry Susskind
- Proc. Amer. Math. Soc. 105 (1989), 159-165
- DOI: https://doi.org/10.1090/S0002-9939-1989-0930247-2
- PDF | Request permission
Abstract:
The hyperelliptic involution of a genus two Riemann surface leaves invariant every simple closed geodesic on the surface. This property is not possessed by any other automorphism of a compact Riemann surface and is related to the effectiveness of the action of the mapping class group of a surface on Teichmüller space.References
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- Hershel M. Farkas and Irwin Kra, Riemann surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980. MR 583745
- Andrew Haas, Diophantine approximation on hyperbolic orbifolds, Duke Math. J. 56 (1988), no. 3, 531–547. MR 948532, DOI 10.1215/S0012-7094-88-05622-0
- Jakob Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), no. 1, 189–358 (German). MR 1555256, DOI 10.1007/BF02421324
- Jakob Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23–115 (German). MR 13306, DOI 10.1007/BF02404101
- David Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29–38. MR 322165, DOI 10.1112/jlms/s2-6.1.29
- Heiner Zieschang, Elmar Vogt, and Hans-Dieter Coldewey, Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, vol. 835, Springer, Berlin, 1980. Translated from the German by John Stillwell. MR 606743
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 159-165
- MSC: Primary 30F10; Secondary 32J99
- DOI: https://doi.org/10.1090/S0002-9939-1989-0930247-2
- MathSciNet review: 930247