Infinitesimal pseudometrics and the Schwarz lemma
HTML articles powered by AMS MathViewer
- by M. Klimek
- Proc. Amer. Math. Soc. 105 (1989), 134-140
- DOI: https://doi.org/10.1090/S0002-9939-1989-0930248-4
- PDF | Request permission
Abstract:
In this paper we investigate the relationship between infinitesimal pseudo-metrics introduced by N. Sibony and K. Azukawa. Also we prove a version of the Schwarz lemma for plurisubharmonic functions.References
- Kazuo Azukawa, Two intrinsic pseudometrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan 38 (1986), no. 4, 627–647. MR 856131, DOI 10.2969/jmsj/03840627
- Kazuo Azukawa, The invariant pseudometric related to negative plurisubharmonic functions, Kodai Math. J. 10 (1987), no. 1, 83–92. MR 879385, DOI 10.2996/kmj/1138037363
- Eric Bedford and Morris Kalka, Foliations and complex Monge-Ampère equations, Comm. Pure Appl. Math. 30 (1977), no. 5, 543–571. MR 481107, DOI 10.1002/cpa.3160300503
- Jean-Pierre Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519–564 (French). MR 881709, DOI 10.1007/BF01161920
- M. Klimek, Complex foliations generated by $(1,1)$-forms, Proc. Amer. Math. Soc. 91 (1984), no. 4, 601–606. MR 746098, DOI 10.1090/S0002-9939-1984-0746098-3
- M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), no. 2, 231–240 (English, with French summary). MR 820321
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- Nessim Sibony, A class of hyperbolic manifolds, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 357–372. MR 627768
- Masaaki Suzuki, The intrinsic metrics on the domains in $\textbf {C}^{n}$, Math. Rep. Toyama Univ. 6 (1983), 143–177. MR 719152
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 134-140
- MSC: Primary 32H15; Secondary 32F05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0930248-4
- MathSciNet review: 930248