THREE-SPACE PROBLEMS FOR THE APPROXIMATION PROPERTIES

GILLES GODEFROY AND PIERRE DAVID SAPHAR

(Communicated by William J. Davis)

Abstract. Let \(M \) be a closed subspace of a Banach space \(X \). We suppose that \(M \) has the B.A.P. and that \(M^\perp \) is complemented in \(X^* \). Then, if \(X/M \) has the B.A.P. (resp. the A.P.), the space \(X \) has the same property. There are similar results if \(M \) is a \(C_0 \) space. If \(X/M \) is an \(L_1 \) space, then \(X \) has the B.A.P. if and only if \(M \) has the B.A.P. We notice that the quotient algebra \(L(H)/K(H) \) (\(H \) infinite-dimensional Hilbert space) does not have the A.P.

1. Introduction

Let \(X \) be a Banach space, and \(M \) a closed subspace of \(X \). Assume that the spaces \(M \) and \(X/M \) have the bounded approximation property (B.A.P.); what can be said about \(X \)? It is known that this does not imply in general that \(X \) the approximation property (A.P.); Indeed W. B. Johnson and H. P. Rosenthal have shown in [6] that every separable space \(X \) contains a subspace \(M \) such that both \(M \) and \(X/M \) have a finite-dimensional decomposition. More recently, W. Lusky in [12] has shown that if \(X \) is separable and contains a subspace isomorphic to \(c_0 \), then there exists a subspace \(M \) of \(X \) with a basis such that \(X/M \) has a shrinking basis. However, some positive results can be obtained under simple additional assumptions.

A typical result is the following: If \(M \) is a closed subspace of a Banach space \(X \) such that \(M^\perp \) is complemented in \(X^* \), and if \(X/M \) has the B.A.P., then \(X \) has the B.A.P. if and only if \(M \) has the B.A.P. We also show that if \(M \) is an \(L_\infty \) space and \(X/M \) has the A.P. (resp. the B.A.P.), then \(X \) has the A.P. (resp. the B.A.P.). On the other hand, if \(X/M \) is an \(L_1 \) space, \(X \) has the B.A.P. if and only if \(M \) has the B.A.P. We deduce from Szankowski's result [13], that the quotient algebra \(L(H)/K(H) \) (\(H \) infinite-dimensional Hilbert space) does not have the A.P.

Notations. The space of bounded operators of a Banach space \(X \) is denoted by \(L(X) \), and the space of finite rank operators by \(R(X) \). For two Banach spaces \(X \) and \(Y \), the quotient space \(X/Y \) is denoted by \(X/Y \).

Received by the editors December 1, 1987.

Key words and phrases. approximation property, three-space problem, extension of finite rank operators.
X and Y, the tensor product $X \otimes Y$ endowed with the projective norm π and completed will be denoted $X \otimes_\pi Y$. If X^* is the dual of X, the w^*-topology on $L(X^*)$ is the topology of pointwise convergence on the canonical predual $X^* \otimes_\pi X$ of $L(X^*)$. The topology w_{op}^* on $L(X^*)$ is the topology of pointwise convergence on the algebraic tensor product $X^* \otimes X$. Our reference on the approximation properties (originally defined in [4]) is [11, Section 1.e]. The L_1 and L_∞ spaces are defined and studied in [10].

2. Results

Our first lemma is a classical perturbation argument (see [2]).

Lemma 2.1. Let X be a Banach space. Then:

1) X has the A.P. if and only if Id_{X^*} belongs to the closure of $R(X^*)$ in $(L(X^*), w^*)$;

2) X has the B.A.P. if and only if there exists $\lambda > 0$ such that Id_{X^*} belongs to the closure of $\{R; R \in R(X^*), \|R\| \leq \lambda\}$ in $(L(X^*), w_{op}^*)$ (or in $(L(X^*), w^*)$).

Proof. (1) Assume that X has the A.P. Let (R_α) be a net of finite rank operators from X into X such that $R_\alpha \to \text{Id}_X$ for the topology τ_k of compact convergence. By [11, Proposition 1.e.3] one has $(R_\alpha) \to (\phi(\text{Id}_X))$ for every $\phi \in X^* \otimes X$; hence $R_\alpha \to \text{Id}_X$.

Assume conversely that Id_{X^*} belongs to the closure of $R(X^*)$ in $(L(X^*), w^*)$. Let $U \in R(X^*)$. One verifies easily that there exists a net (T_α) in $R(X)$ such that $T_\alpha \to U$. Thus, there exists a net (V_α) in $R(X)$ such that $V_\alpha \to \text{Id}_X$. Hence, V_α converges to Id_X for the weak topology of $(L(X), \tau_k)$ and a convex combination argument shows that X has the A.P.

(2) If X has the B.A.P., it is clear that there exists $\lambda > 0$ such that Id_{X^*} belongs to the closure of $\{R; R \in R(X^*), \|R\| \leq \lambda\}$ in $(L(X^*), w^*)$. The converse is exactly Theorem 1 of [2].

Observe finally that by compactness, the topologies w^* and w_{op}^* coincide on the bounded subsets of $L(X^*)$. □

The next results will show the main tools for obtaining positive results in the "three-space" situation.

Lemma 2.2. Let X be a Banach space, and M a closed subspace of X such that X/M has the A.P. If there exists a bounded net (T_α) in $R(X)$ such that

$$\langle T_\alpha(x), x^* \rangle \to \langle x, x^* \rangle \quad \text{for each } x \in M \text{ and each } x^* \in X^*,$$

then X has the A.P.

Proof. The net (T_α^*) is a bounded net in the dual space $L(X^*)$. Let U be a w^*-cluster point of (T_α^*). Clearly $\langle x, U(x^*) \rangle = \langle x, x^* \rangle$ for each $x \in M$ and each $x^* \in X^*$. Then, if j is the canonical map from M^\perp to X^*, there exists an operator D from X^* to M^\perp such that $U - \text{Id}_{X^*} = jD$.

By assumption, X/M has the A.P., hence there is a net (S_β) in $R(X/M)$ such that (S_β^*) satisfies $S_\beta^* \rightharpoonup \text{Id}_{M^\perp}$ in $L(M^\perp)$. If we let $V_\beta = jS_\beta D$, we have $V_\beta^* \rightharpoonup jD$ in $L(X^*)$. This shows that $\text{Id}_{X^*} = U - jD$ belongs to the w^*-closure of the set $(T_\alpha^* - V_\beta)$; hence by 2.1(1), X has the A.P. □

In the case where X/M is assumed to have the B.A.P., we can state

Lemma 2.3. Let X be a Banach space and M a closed subspace of X such that X/M has the B.A.P. Then the following are equivalent:

1. X has the B.A.P.;
2. There exists a bounded net (T_α) in $R(X)$ such that
 \[
 \forall x \in M, \forall x^* \in X^*, \langle T_\alpha(x), x^* \rangle \to \langle x, x^* \rangle.
 \]

Proof. (1) \Rightarrow (2) is clear by restriction.

(2) \Rightarrow (1). We repeat the proof of 2.2 with the same notation. Since X/M has the B.A.P., the net (S_β) may be taken bounded; then (V_β) is bounded and Id_{X^*} is in the w^*-closure of a bounded subset of $R(X^*)$. We conclude by 2.1(2). □

Let us now state the main result of this note.

Theorem 2.4. Let X be a Banach space, and M a closed subspace of X such that M^\perp is complemented in X^*. Then we have:

1. If X has the A.P. (resp. the B.A.P.), M has the A.P. (resp. the B.A.P.);
2. If M has the B.A.P., then X/M has the A.P. implies that X has the A.P.,

 X/M has the B.A.P. implies that X has the B.A.P.

Proof. Let i be the canonical map from M to X. Since M^\perp is complemented in X^*, there exists an operator σ from M^* to X^* such that $i^*\sigma = \text{Id}_{M^*}$.

(1) Let (T_α) be a net in $R(X^*)$ such that $T_\alpha \rightharpoonup \text{Id}_{X^*}$ in $L(X^*)$. We consider the operators $W_\alpha = i^*T_\alpha \sigma$; it is clear that $W_\alpha \in R(M^*)$ and that $W_\alpha \rightharpoonup \text{Id}_{M^*}$ in $L(M^*)$. Moreover, $\|W_\alpha\| \leq \|T_\alpha\| \|\sigma\|$. Hence, the net (W_α) is bounded if (T_α) is bounded. Lemma 2.1 concludes the proof.

(2) Let (R_α) be a bounded net in $R(M)$ such that $R_\alpha m \to m$, for every $m \in M$. Each operator (R_α) can be written

\[
R_\alpha = \sum_{t=1}^{n(\alpha)} m_{t,\alpha}^* \otimes m_{t,\alpha}, \quad m_{t,\alpha}^* \in M^*, m_{t,\alpha} \in M.
\]

We define $S_\alpha \in R(X)$ by

\[
S_\alpha = \sum_{t=1}^{n(\alpha)} \sigma(m_{t,\alpha}^*) \otimes m_{t,\alpha}.
\]
It is clear that for every $m \in M$ and every $x^* \in X^*$
\[\langle S_\alpha(m), x^* \rangle = \langle R_\alpha(m), x^* \rangle \rightarrow \langle m, x^* \rangle. \]
Moreover, $\|S_\alpha\| \leq \|\sigma\| \cdot \|R_\alpha\|$, and the net (S_α) is bounded. Now Lemmas 2.2 and 2.3 conclude the proof. \(\Box \)

We describe now a few consequences of this result. Our first observation deals with subspaces of X containing M.

Corollary 2.5. Let M and Y be two subspaces of X such that $M \subset Y \subset X$. Suppose M^\perp is complemented in X^*. Then, the orthogonal of M in Y^* is complemented in Y^*. Hence if M does not have the A.P. (resp. the B.A.P.), no space Y between M and X has the A.P. (resp. the B.A.P.).

Proof. If we write $X^* = M^\perp \oplus Z$ then we have
\[Y^* = X^*/Y^\perp = (M^\perp/Y^\perp) \oplus Z \]
and the space M^\perp/Y^\perp is precisely the orthogonal of M in Y^*. The conclusion follows by 2.4(1). \(\Box \)

Example 2.6. Let X be a Banach space, and $G = X^U$ an ultrapower of X (see, for instance [1 or 5]). If $x = (x_i)$ is an element of G, we can define a map σ from X^* to G^* by $\langle x, \sigma(f) \rangle = \lim_{U}(\langle x_i, f \rangle)$ for each f of X^*. It is clear that σ is a right inverse of the canonical map from G^* to X^*. Then X^\perp is complemented in G^*. Hence, Theorem 2.4 applies to this situation. Let F be a subspace of G such that $X \subset F \subset G$; by Corollary 2.5 we obtain that if X does not have the A.P. (resp. the B.A.P.), it is the same for F. For a similar connection between finite representability and extensions, see [8].

The above applies for instance to any Banach space F such that $X \subset F \subset X^{**}$. In the case $F = X^{**}$, we can deduce from [7] more precise results, namely:

Corollary 2.7. Let X be a Banach space. Let us call (P) one of the properties:

(i) Y has a basis;
(ii) Y has an F.D.D.;
(iii) Y is a π-space (see [7, p. 489]);
(iv) Y has the B.A.P.

Then if X and X^{**}/X have (P), X^{**} and X^* have (P).

Proof. If X and X^{**}/X have the B.A.P., then X^{**} has the B.A.P. by 2.4(2), and thus X^* has the B.A.P. [11, Theorem 1.e.7] and (iv) is proved. Now the conclusion follows:

(a) if (P) is (i), from [7, Theorem 1.4.(b)];
(b) if (P) is (ii), from [7, Theorem 1.3]);
(c) if (P) is (iii), from [7, Corollary 4.8]. \(\Box \)

The next observation is a consequence of an important result of Szankowski (see [13]).
Corollary 2.8. Let H be an infinite-dimensional Hilbert space, and $K(H)$ be the space of compact operators on H. Then the quotient algebra $L(H)/K(H)$ does not have the A.P.

Proof. Since $L(H) = K(H)^{**}$, $K(H)^{\perp}$ is complemented in $L(H)^*$. The space $K(H)$ has the B.A.P. On the other hand, by [13], $L(H)$ does not have the A.P. Therefore, 2.4(2) concludes the proof. □

Let us finally show

Corollary 2.9. Let M be a closed subspace of the Banach space X. Then:

1. If M is an \mathcal{L}_∞ space and X/M has the A.P. (resp. the B.A.P.), then X has the A.P. (resp. the B.A.P.);
2. If X/M is an \mathcal{L}_1 space, then X has the B.A.P. if and only if M has the B.A.P.

Proof. (1) If M is an \mathcal{L}_∞ space (see [10]), then M has the B.A.P. Moreover, there exists a constant K such that every finite rank operator $R: M \to M$ admits an extension $\tilde{R}: X \to M$ of finite rank, with $\|\tilde{R}\| \leq K \cdot \|R\|$. Hence there exists a bounded net (T_α) in $R(X)$ such that $(T_\alpha(x))$ converges weakly to x for every $x \in M$. Lemmas 2.2 and 2.3 conclude the proof.

(2) If X/M is an \mathcal{L}_1 space, then M^\perp is a dual \mathcal{L}_∞ space and thus M^\perp is complemented in X^*. Moreover, X/M has the B.A.P. The result now follows by 2.4. □

Remarks. (1) Let E be a separable Banach space. By [9], there exists a space Y such that Y^{**} has a basis and Y^{**}/Y is isomorphic to E. If we choose E to be a separable Banach space without the A.P. (see [3]), we have an example of a couple of spaces $Y = M$, Y^{**}/Y is isomorphic to E where M is complemented in X^*, X and M have the B.A.P. but X/M does not have the A.P. (2) There is apparently no known example of a Banach space X with the A.P. containing a closed subspace M without the A.P., but such that X/M has the A.P. (3) If M is an M-ideal in X, then obviously M^\perp is complemented in X^* and thus 2.4 applies. Let us mention that under that assumption if X/M is separable and has the B.A.P., then M is complemented in X (see [14]).

References

Equipe d'Analyse Université Paris VI, Tour 46-0.4° étage, 4 Place Jussieu, 75230 Paris Cedex 05, France

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000 Israel