Completely continuous Hankel operators on $H^ \infty$ and Bourgain algebras
HTML articles powered by AMS MathViewer
- by Joseph A. Cima, Svante Janson and Keith Yale
- Proc. Amer. Math. Soc. 105 (1989), 121-125
- DOI: https://doi.org/10.1090/S0002-9939-1989-0931727-6
- PDF | Request permission
Abstract:
Let ${({H^\infty })_b}$ be the Bourgain algebra of ${H^\infty } \subset {L^\infty }$. We prove ${({H^\infty })_b} = {H^\infty } + C$. In particular if $f \in {L^\infty }$ then the Hankel operator ${H_f}$ is a compact map of ${H^\infty }$ into BMO iff whenever ${f_n} \to 0$ weakly in ${H^\infty }$, then $\operatorname {dist}{(}f{f_n},{H^\infty }) \to 0$.References
- J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Studia Math. 77 (1984), no. 3, 245–253. MR 745280, DOI 10.4064/sm-77-3-246-253
- J. Bourgain, New Banach space properties of the disc algebra and $H^{\infty }$, Acta Math. 152 (1984), no. 1-2, 1–48. MR 736210, DOI 10.1007/BF02392189
- Joseph A. Cima and Richard M. Timoney, The Dunford-Pettis property for certain planar uniform algebras, Michigan Math. J. 34 (1987), no. 1, 99–104. MR 873024, DOI 10.1307/mmj/1029003487
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 121-125
- MSC: Primary 30D55; Secondary 46J15, 47B35
- DOI: https://doi.org/10.1090/S0002-9939-1989-0931727-6
- MathSciNet review: 931727