Estimates for fundamental solutions of second-order subelliptic differential operators
HTML articles powered by AMS MathViewer
- by Michael Christ
- Proc. Amer. Math. Soc. 105 (1989), 166-172
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953002-6
- PDF | Request permission
Abstract:
A simple proof is given of pointwise estimates of C. Fefferman and A. Sánchez-Calle for the fundamental solution of a subelliptic, second-order partial differential operator with nonnegative characteristic form, based on a rescaling argument.References
- Michael Christ, Regularity properties of the $\overline \partial _b$ equation on weakly pseudoconvex CR manifolds of dimension $3$, J. Amer. Math. Soc. 1 (1988), no. 3, 587–646. MR 928903, DOI 10.1090/S0894-0347-1988-0928903-2
- C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 590–606. MR 730094
- Charles L. Fefferman and Antonio Sánchez-Calle, Fundamental solutions for second order subelliptic operators, Ann. of Math. (2) 124 (1986), no. 2, 247–272. MR 855295, DOI 10.2307/1971278 M. Machedon, Estimates of the parametrix of the Kohn Laplacian on certain weakly pseudoconvex domains, preprint.
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- O. A. Oleĭnik, On hypoellipticity of second order equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 145–151. MR 0470454
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 166-172
- MSC: Primary 35H05; Secondary 32F20, 58G05
- DOI: https://doi.org/10.1090/S0002-9939-1989-0953002-6
- MathSciNet review: 953002