Distributive factor lattices in free rings
HTML articles powered by AMS MathViewer
- by P. M. Cohn
- Proc. Amer. Math. Soc. 105 (1989), 34-41
- DOI: https://doi.org/10.1090/S0002-9939-1989-0973837-3
- PDF | Request permission
Abstract:
For any field $E$ with subfield $k$ the free $E$-ring over $k$ on a set $X,\quad R = {\text { }}{E_k}\left \langle X \right \rangle$ is a fir. It is proved here that when $E/k$ is purely inseparable, then the submodule lattice $R/cR$ is distributive, for any $c \ne 0$ ( $R$ has distributive factor lattice); by contrast this is false when $E/k$ is a nontrivial Galois extension and $X \ne \emptyset$.References
- G. M. Bergman, Commuting elements in free algebras and related topics in ring theory, Thesis, Harvard Univ., 1967.
- George M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1–32. MR 357502, DOI 10.1090/S0002-9947-1974-0357502-5 P. M. Cohn, Algebra 2, Wiley, Chichester, 1977, Second edition in preparation.
- Paul M. Cohn, Ringe mit distributivem Faktorverband, Abh. Braunschweig. Wiss. Ges. 33 (1982), 35–40 (German). MR 693161
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- Warren Dicks and Eduardo D. Sontag, Sylvester domains, J. Pure Appl. Algebra 13 (1978), no. 3, 243–275. MR 509164, DOI 10.1016/0022-4049(78)90011-7
- Martin Eichler, Einführung in die Theorie der algebraischen Zahlen und Funktionen, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 27, Birkhäuser Verlag, Basel-Stuttgart, 1963 (German). MR 0168561
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 34-41
- MSC: Primary 16A06
- DOI: https://doi.org/10.1090/S0002-9939-1989-0973837-3
- MathSciNet review: 973837