Dynamical systems from function algebras
HTML articles powered by AMS MathViewer
- by Tim Pennings and Justin Peters
- Proc. Amer. Math. Soc. 105 (1989), 80-86
- DOI: https://doi.org/10.1090/S0002-9939-1989-0973840-3
- PDF | Request permission
Abstract:
Let $X$ be compact Hausdorff, $\Sigma$ the natural numbers or integers, $\varphi :X \to X$, and $\{ {\varphi ^k}:k \in \Sigma \}$ a (semi)group of continuous functions from $X$ to $X$. Given the dynamical system $(X,\varphi ,\Sigma )$, let $\mathfrak {A}$ be a $\Sigma$-invariant ${C^*}$-algebra of bounded functions containing $C(X)$. There is a natural extension $(\hat X,\hat \varphi ,\Sigma )$ of $(X,\varphi ,\Sigma )$ where $\hat X$ is the spectrum of $\mathfrak {A}$ and $\hat \varphi$ is given by $\hat \varphi (\hat x)f = \hat x(f \circ \varphi )$. If $\mathfrak {A}$ has a dense subset of functions continuous on a cofinite set, then $(\hat X,\hat \varphi ,\Sigma )$ inherits the properties of minimality and topological transitivity from $(X,\varphi ,\Sigma )$ if $\mathfrak {A}$ contains no point characteristic functions.References
- S. K. Berberian, The character space of the algebra of regulated functions, Pacific J. Math. 74 (1978), no. 1, 15–36. MR 487932
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 80-86
- MSC: Primary 46J10; Secondary 43A45, 46L30, 46L55
- DOI: https://doi.org/10.1090/S0002-9939-1989-0973840-3
- MathSciNet review: 973840