## On a domain characterization of Schrödinger operators with gradient magnetic vector potentials and singular potentials

HTML articles powered by AMS MathViewer

- by Jerome A. Goldstein and Roman Svirsky
- Proc. Amer. Math. Soc.
**105**(1989), 317-323 - DOI: https://doi.org/10.1090/S0002-9939-1989-0931731-8
- PDF | Request permission

## Abstract:

Of concern are the minimal and maximal operators on ${L^2}({{\mathbf {R}}^n})$ associated with the differential expression \[ {\tau _Q} = \sum \limits _{j = 1}^n {(i\partial /\partial {x_j}} + {q_j}(x){)^2} + W(x)\] where $(q, \ldots ,{q_n}) = \operatorname {grad}Q$ for some real function $W$ on ${{\mathbf {R}}^n}$ and $W$ satisfies $c{\left | x \right |^{ - 2}} \leq W(x) \leq C{\left | x \right |^{ - 2}}$. In particular, for $Q = 0$, ${\tau _Q}$ reduces to the singular Schrödinger operator $- \Delta + W(x)$. Among other results, it is shown that the maximal operator (associated with the ${\tau _Q}$) is the closure of the minimal operator, and its domain is precisely \[ \operatorname {Dom}\left ( {\sum \limits _{j = 1}^n {{{(i\partial /\partial {x_j} + {q_j}(x))}^2}} } \right ) \cap \operatorname {Dom}(W),\] provided that $C \geq c > - n(n - 4)/4$.## References

- Pierre Baras and Jerome A. Goldstein,
*Remarks on the inverse square potential in quantum mechanics*, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 31–35. MR**799330**, DOI 10.1016/S0304-0208(08)73675-2 - E. B. Davies,
*Some norm bounds and quadratic form inequalities for Schrödinger operators. II*, J. Operator Theory**12**(1984), no. 1, 177–196. MR**757118** - James Glimm and Arthur Jaffe,
*Singular perturbations of selfadjoint operators*, Comm. Pure Appl. Math.**22**(1969), 401–414. MR**282243**, DOI 10.1002/cpa.3160220305 - Jerome A. Goldstein,
*Semigroups of linear operators and applications*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR**790497** - Jerome A. Goldstein and Roman Svirsky,
*Singular potentials and scaling*, Houston J. Math.**13**(1987), no. 4, 557–566. MR**929292** - Hubert Kalf,
*A note on the domain characterization of certain Schrödinger operators with strongly singular potentials*, Proc. Roy. Soc. Edinburgh Sect. A**97**(1984), 125–130. MR**751183**, DOI 10.1017/S0308210500031899 - H. Kalf, U.-W. Schmincke, J. Walter, and R. Wüst,
*On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials*, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, pp. 182–226. MR**0397192** - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. I*, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR**751959** - Derek W. Robinson,
*Scattering theory with singular potentials. I. The two-body problem*, Ann. Inst. H. Poincaré Sect. A (N.S.)**21**(1974), no. 3, 185–215. MR**377304**
D.-W. Schmincke, - Barry Simon,
*Essential self-adjointness of Schrödinger operators with singular potentials*, Arch. Rational Mech. Anal.**52**(1973), 44–48. MR**338548**, DOI 10.1007/BF00249091 - Barry Simon,
*Hardy and Rellich inequalities in nonintegral dimension*, J. Operator Theory**9**(1983), no. 1, 143–146. MR**695943** - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR**0304972**

*Essential self-adjointness of a Schrödinger operator with strongly singular potential*, Math. Z.

**123**(1972), 47-50.

## Bibliographic Information

- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**105**(1989), 317-323 - MSC: Primary 47F05; Secondary 35J10, 81C10
- DOI: https://doi.org/10.1090/S0002-9939-1989-0931731-8
- MathSciNet review: 931731