$\kappa$-metrizable spaces, stratifiable spaces and metrization
HTML articles powered by AMS MathViewer
- by J. Suzuki, K. Tamano and Y. Tanaka
- Proc. Amer. Math. Soc. 105 (1989), 500-509
- DOI: https://doi.org/10.1090/S0002-9939-1989-0933521-9
- PDF | Request permission
Abstract:
It is shown that every $\kappa$-metrizable CW-complex is metrizable. Examples are given showing that a stratifiable $\kappa$-metrizable space and an additively $\kappa$-metrizable space need not be metrizable.References
- Carlos J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16. MR 188982, DOI 10.2140/pjm.1966.17.1
- Jack G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105–125. MR 131860, DOI 10.2140/pjm.1961.11.105 A. N. Dranišnikov, Simultaneous annihilation of families of closed sets, $\kappa$-metrizable and stratifiable spaces, Soviet Math. Dokl. 19 (1978), 1466-1469.
- Gary Gruenhage, Continuously perfectly normal spaces and some generalizations, Trans. Amer. Math. Soc. 224 (1976), no. 2, 323–338. MR 428275, DOI 10.1090/S0002-9947-1976-0428275-4
- Gary Gruenhage, Generalized metric spaces, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 423–501. MR 776629
- R. W. Heath, D. J. Lutzer, and P. L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973), 481–493. MR 372826, DOI 10.1090/S0002-9947-1973-0372826-2
- R. E. Hodel, Moore spaces and $w$ $\Delta$-spaces, Pacific J. Math. 38 (1971), 641–652. MR 307169, DOI 10.2140/pjm.1971.38.641
- R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253–263. MR 293580, DOI 10.1215/S0012-7094-72-03930-0
- Takesi Isiwata, Metrization of additive $\kappa$-metric spaces, Proc. Amer. Math. Soc. 100 (1987), no. 1, 164–168. MR 883422, DOI 10.1090/S0002-9939-1987-0883422-8
- V. Kannan, Every compact $T_{5}$ sequential space is Fréchet, Fund. Math. 107 (1980), no. 2, 85–90. MR 584661, DOI 10.4064/fm-107-2-85-90
- E. A. Michael, A quintuple quotient quest, General Topology and Appl. 2 (1972), 91–138. MR 309045, DOI 10.1016/0016-660X(72)90040-2
- Frank Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl. 1 (1971), no. 2, 143–154. MR 288737, DOI 10.1016/0016-660X(71)90120-6 E. V. Ščepin, On $\kappa$-metrizable spaces, Math. USSR Izvestija 14 (1980), 407-440.
- Ken-ichi Tamano, Closed images of metric spaces and metrization, Proceedings of the 1985 topology conference (Tallahassee, Fla., 1985), 1985, pp. 177–186. MR 851211
- Yoshio Tanaka, Metrizability of certain quotient spaces, Fund. Math. 119 (1983), no. 2, 157–168. MR 731817, DOI 10.4064/fm-119-2-157-168
- Yoshio Tanaka and Hao Xuan Zhou, Spaces dominated by metric subsets, Proceedings of the 1984 topology conference (Auburn, Ala., 1984), 1984, pp. 149–163. MR 781558
- Phillip Zenor, Some continuous separation axioms, Fund. Math. 90 (1975/76), no. 2, 143–158. MR 394561, DOI 10.4064/fm-90-2-143-158
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 500-509
- MSC: Primary 54E35; Secondary 54E20
- DOI: https://doi.org/10.1090/S0002-9939-1989-0933521-9
- MathSciNet review: 933521