## Invariants for a class of torsion-free abelian groups

HTML articles powered by AMS MathViewer

- by D. Arnold and C. Vinsonhaler
- Proc. Amer. Math. Soc.
**105**(1989), 293-300 - DOI: https://doi.org/10.1090/S0002-9939-1989-0935102-X
- PDF | Request permission

## Abstract:

In this note we present a complete set of quasi-isomorphism invariants for strongly indecomposable abelian groups of the form $G = G({A_1}, \ldots ,{A_n})$. Here ${A_1}, \ldots ,{A_n}$ are subgroups of the rationals $Q$ and $G$ is the kernel of $f:{A_1} \oplus \cdots \oplus {A_n} \to Q$, where $f({a_1}, \ldots ,{a_n}) = \Sigma {a_i}$. The invariants are the collection of numbers ${\text {rank}} \cap \{ G[\sigma ]|\sigma \in M\}$, where $M$ ranges over all subsets of the type lattice generated by $\left \{ {{\text {type}}({A_i})} \right \}$. Our results generalize the classical result of Baer for finite rank completely decomposable groups, as well as a result of F. Richman on a subset of the groups of the form $G({A_1}, \ldots ,{A_n})$.## References

- David M. Arnold,
*Finite rank torsion free abelian groups and rings*, Lecture Notes in Mathematics, vol. 931, Springer-Verlag, Berlin-New York, 1982. MR**665251**
—, - David M. Arnold,
*Pure subgroups of finite rank completely decomposable groups*, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 1–31. MR**645913** - D. Arnold and C. Vinsonhaler,
*Pure subgroups of finite rank completely decomposable groups. II*, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 97–143. MR**722614**, DOI 10.1007/BFb0103698 - D. Arnold and C. Vinsonhaler,
*Representing graphs for a class of torsion-free abelian groups*, Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York, 1987, pp. 309–332. MR**1011321** - D. Arnold and C. Vinsonhaler,
*Quasi-isomorphism invariants for a class of torsion-free abelian groups*, Houston J. Math.**15**(1989), no. 3, 327–340. MR**1032393** - D. M. Arnold and C. I. Vinsonhaler,
*Endomorphism rings of Butler groups*, J. Austral. Math. Soc. Ser. A**42**(1987), no. 3, 322–329. MR**877802**
—, - Reinhold Baer,
*Abelian groups without elements of finite order*, Duke Math. J.**3**(1937), no. 1, 68–122. MR**1545974**, DOI 10.1215/S0012-7094-37-00308-9 - Sheila Brenner and M. C. R. Butler,
*Endomorphism rings of vector spaces and torsion free abelian groups*, J. London Math. Soc.**40**(1965), 183–187. MR**174593**, DOI 10.1112/jlms/s1-40.1.183 - R. A. Beaumont and R. S. Pierce,
*Torsion free groups of rank two*, Mem. Amer. Math. Soc.**38**(1961), 41. MR**130297** - M. C. R. Butler,
*A class of torsion-free abelian groups of finite rank*, Proc. London Math. Soc. (3)**15**(1965), 680–698. MR**218446**, DOI 10.1112/plms/s3-15.1.680 - M. C. R. Butler,
*Torsion-free modules and diagrams of vector spaces*, Proc. London Math. Soc. (3)**18**(1968), 635–652. MR**230767**, DOI 10.1112/plms/s3-18.4.635
—, - James D. Reid,
*On the ring of quasi-endomorphisms of a torsion-free group*, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp. 51–68. MR**0169915** - Fred Richman,
*Butler groups, valuated vector spaces, and duality*, Rend. Sem. Mat. Univ. Padova**72**(1984), 13–19. MR**778329** - Fred Richman,
*An extension of the theory of completely decomposable torsion-free abelian groups*, Trans. Amer. Math. Soc.**279**(1983), no. 1, 175–185. MR**704608**, DOI 10.1090/S0002-9947-1983-0704608-X

*Representations of partially ordered sets and abelian groups*, Proceedings of the 1987 Perth Conference on Abelian Groups (to appear).

*Coxeter functors and duality for abelian groups*, preprint.

*Some almost split sequences in torsion-free abelian group theory*, Abelian Group Theory, Gordon and Breach, New York, 1987, pp. 291-302.

## Bibliographic Information

- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**105**(1989), 293-300 - MSC: Primary 20K15
- DOI: https://doi.org/10.1090/S0002-9939-1989-0935102-X
- MathSciNet review: 935102