Invariants for a class of torsion-free abelian groups
HTML articles powered by AMS MathViewer
- by D. Arnold and C. Vinsonhaler
- Proc. Amer. Math. Soc. 105 (1989), 293-300
- DOI: https://doi.org/10.1090/S0002-9939-1989-0935102-X
- PDF | Request permission
Abstract:
In this note we present a complete set of quasi-isomorphism invariants for strongly indecomposable abelian groups of the form $G = G({A_1}, \ldots ,{A_n})$. Here ${A_1}, \ldots ,{A_n}$ are subgroups of the rationals $Q$ and $G$ is the kernel of $f:{A_1} \oplus \cdots \oplus {A_n} \to Q$, where $f({a_1}, \ldots ,{a_n}) = \Sigma {a_i}$. The invariants are the collection of numbers ${\text {rank}} \cap \{ G[\sigma ]|\sigma \in M\}$, where $M$ ranges over all subsets of the type lattice generated by $\left \{ {{\text {type}}({A_i})} \right \}$. Our results generalize the classical result of Baer for finite rank completely decomposable groups, as well as a result of F. Richman on a subset of the groups of the form $G({A_1}, \ldots ,{A_n})$.References
- David M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, vol. 931, Springer-Verlag, Berlin-New York, 1982. MR 665251 —, Representations of partially ordered sets and abelian groups, Proceedings of the 1987 Perth Conference on Abelian Groups (to appear).
- David M. Arnold, Pure subgroups of finite rank completely decomposable groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 1–31. MR 645913
- D. Arnold and C. Vinsonhaler, Pure subgroups of finite rank completely decomposable groups. II, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 97–143. MR 722614, DOI 10.1007/BFb0103698
- D. Arnold and C. Vinsonhaler, Representing graphs for a class of torsion-free abelian groups, Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York, 1987, pp. 309–332. MR 1011321
- D. Arnold and C. Vinsonhaler, Quasi-isomorphism invariants for a class of torsion-free abelian groups, Houston J. Math. 15 (1989), no. 3, 327–340. MR 1032393
- D. M. Arnold and C. I. Vinsonhaler, Endomorphism rings of Butler groups, J. Austral. Math. Soc. Ser. A 42 (1987), no. 3, 322–329. MR 877802 —, Coxeter functors and duality for abelian groups, preprint.
- Reinhold Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), no. 1, 68–122. MR 1545974, DOI 10.1215/S0012-7094-37-00308-9
- Sheila Brenner and M. C. R. Butler, Endomorphism rings of vector spaces and torsion free abelian groups, J. London Math. Soc. 40 (1965), 183–187. MR 174593, DOI 10.1112/jlms/s1-40.1.183
- R. A. Beaumont and R. S. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc. 38 (1961), 41. MR 130297
- M. C. R. Butler, A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. (3) 15 (1965), 680–698. MR 218446, DOI 10.1112/plms/s3-15.1.680
- M. C. R. Butler, Torsion-free modules and diagrams of vector spaces, Proc. London Math. Soc. (3) 18 (1968), 635–652. MR 230767, DOI 10.1112/plms/s3-18.4.635 —, Some almost split sequences in torsion-free abelian group theory, Abelian Group Theory, Gordon and Breach, New York, 1987, pp. 291-302.
- James D. Reid, On the ring of quasi-endomorphisms of a torsion-free group, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp. 51–68. MR 0169915
- Fred Richman, Butler groups, valuated vector spaces, and duality, Rend. Sem. Mat. Univ. Padova 72 (1984), 13–19. MR 778329
- Fred Richman, An extension of the theory of completely decomposable torsion-free abelian groups, Trans. Amer. Math. Soc. 279 (1983), no. 1, 175–185. MR 704608, DOI 10.1090/S0002-9947-1983-0704608-X
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 293-300
- MSC: Primary 20K15
- DOI: https://doi.org/10.1090/S0002-9939-1989-0935102-X
- MathSciNet review: 935102