Artinian duo rings and self-duality
HTML articles powered by AMS MathViewer
- by Wei Min Xue
- Proc. Amer. Math. Soc. 105 (1989), 309-313
- DOI: https://doi.org/10.1090/S0002-9939-1989-0938916-5
- PDF | Request permission
Abstract:
We show that the endomorphism ring of the minimal cogenerator over an Artinian duo ring is still an Artinian duo ring, and that an Artinian duo ring has self-duality if its Jacobson radical is a direct sum of colocal ideals.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223
- Goro Azumaya, A duality theory for injective modules. (Theory of quasi-Frobenius modules), Amer. J. Math. 81 (1959), 249–278. MR 106932, DOI 10.2307/2372855
- Goro Azumaya, Exact and serial rings, J. Algebra 85 (1983), no. 2, 477–489. MR 725096, DOI 10.1016/0021-8693(83)90108-4
- Victor P. Camillo, Kent R. Fuller, and Joel K. Haack, On Azumaya’s exact rings, Math. J. Okayama Univ. 28 (1986), 41–51 (1987). MR 885011
- R. C. Courter, Finite-dimensional right duo algebras are duo, Proc. Amer. Math. Soc. 84 (1982), no. 2, 157–161. MR 637159, DOI 10.1090/S0002-9939-1982-0637159-6
- F. Dischinger and W. Müller, Einreihig zerlegbare artinsche Ringe sind selbstdual, Arch. Math. (Basel) 43 (1984), no. 2, 132–136 (German). MR 761223, DOI 10.1007/BF01193910 J. M. Habeb, On Azumaya’s exact rings and Artinian duo rings, Ph.D. thesis, Indiana University, 1987.
- Takashi Mano, Uniserial rings and skew polynomial rings, Tokyo J. Math. 7 (1984), no. 1, 209–213. MR 752122, DOI 10.3836/tjm/1270153003
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Josef Waschbüsch, Self-duality of serial rings, Comm. Algebra 14 (1986), no. 4, 581–589. MR 830812, DOI 10.1080/00927878608823327
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 309-313
- MSC: Primary 16A35; Secondary 16A15
- DOI: https://doi.org/10.1090/S0002-9939-1989-0938916-5
- MathSciNet review: 938916