THE NUMBER OF INDECOMPOSABLE SEQUENCES
OVER AN ARTIN ALGEBRA OF FINITE TYPE

STEPHEN P. CORWIN

(Communicated by Donald Passman)

ABSTRACT. Let Λ be an artin algebra of finite representation type. For a finitely generated Λ-module C, there are only finitely many f.g. modules A such that $0 \to A \to B \to C \to 0$ is indecomposable as a short exact sequence.

Let Λ be an artin algebra of finite representation type and $\text{mod}\,\Lambda$ the category of finitely generated (f.g.) left Λ modules. If X and C are in $\text{mod}\,\Lambda$, we write $\Lambda(X,C)$ for $\text{hom}_\Lambda(X,C)$ and $P(X,C)$ for the submodule of $\Lambda(X,C)$ comprising those maps $f: X \to C$ for which there exists a factorization

$$X \xrightarrow{f} C \xrightarrow{g} P$$

with P projective. Also, let Tr and D be the usual transpose and dual. In this setting, Theorem 5.7 in M. Auslander's paper [A] may be stated as follows.

Theorem A. Let C be in $\text{mod}\,\Lambda$. Let A_1, \ldots, A_m be a complete list of all non-injective indecomposable modules in $\text{mod}\,\Lambda$ and let $X_i = \text{Tr}DA_i$. For each i, $\Lambda(X_i,C)/P(X_i,C)$ is an $(\text{End} X_i)^{\text{op}}$-module of finite length. Let S_{i_1}, \ldots, S_{i_d} be a complete set of nonisomorphic simple $(\text{End} X_i)^{\text{op}}$-modules, and for each $(\text{End} X_i)^{\text{op}}$-submodule H of $\Lambda(X_i,C)$ containing $P(X_i,C)$ let $n_1(A_i,H), \ldots, n_{d_i}(A_i,H)$ be the uniquely determined nonnegative integers so that the $(\text{End} X_i)^{\text{op}}$-socle of $\Lambda(X_i,C)/H$ is isomorphic to $\prod_{j=1}^{d_i} S_{i_j}^{n_j(A_i,H)}$. Finally let $n(A_i) = \max\{n_j(A_i,H)\}$ as j runs through $1, 2, \ldots, d_i$, and as H runs through all $(\text{End} X_i)^{\text{op}}$-submodules of $\Lambda(X_i,C)$ containing $P(X_i,C)$. Then

1. $n(A_i)$ is finite;
2. if $k > n(A_i)$ and $0 \to A_i^k \xrightarrow{g} B \to C \to 0$ is exact, then A_i^k contains a submodule A' (isomorphic to $A_i^{k-n(A_i)}$) such that $g(A')$ is a summand of B.

Received by the editors March 24, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 16A64, 16A35, 16A46.

©1989 American Mathematical Society
0002-9939/89 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Keeping the notation of Theorem A we have

Theorem 1. Fix \(C \) in \(\text{mod} \Lambda \). Then there are only a finite number of modules \(A \) in \(\text{mod} \Lambda \) for which \(0 \rightarrow A \overset{g}{\rightarrow} B \rightarrow C \rightarrow 0 \) is indecomposable as a short exact sequence. In fact, if \(A \) has an injective summand, or if \(A \simeq \bigsqcup_{i=1}^{m} A_i^{p_i} \) with \(p_i > n(A_i) \) for some \(i \), the sequence decomposes.

Proof. If \(A \) has an injective summand then clearly the sequence decomposes. Suppose \(p_i > n(A_i) \), and form the pushout diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & A & \overset{g}{\rightarrow} & B & \rightarrow \ & C & \rightarrow & 0 \\
\downarrow \text{surj} & & \downarrow & & \downarrow & & \\
0 & \rightarrow & A_i^{p_i} & \overset{h'}{\rightarrow} & D & \rightarrow \ & C & \rightarrow & 0.
\end{array}
\]

Because \(p_i > n(A_i) \), \(A_i^{p_i} \) has a submodule \(A' \) for which \(h'(A') \) is a summand of \(D \) (so \(A' \) is actually a summand of \(A_i^{p_i} \)) by Theorem A. Let \(A'' \), \(A''' \) be such that \(A' \oplus A'' = A \) and \(A' \oplus A''' = A_i^{p_i} \). Then we have a commutative diagram

\[
\begin{array}{cccccccc}
0 & \rightarrow & A' \oplus A'' & \overset{g}{\rightarrow} & B & \rightarrow & C & \rightarrow & 0 \\
\downarrow \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} & & \downarrow \begin{bmatrix} 2 \\ 0 \end{bmatrix} & & \downarrow & & \\
0 & \rightarrow & A' \oplus A''' & \overset{\alpha(A') \oplus B'}{\rightarrow} & C & \rightarrow & 0.
\end{array}
\]

in which \(\alpha = h'|_{A'} \) is an isomorphism and \(h = h'|_{A'''}. \) Then \(A' \overset{1}{\rightarrow} A' \overset{g}{\rightarrow} g(A') \) is a monomorphism which is split by \(B \overset{\mu}{\rightarrow} \alpha(A') \overset{\alpha^{-1}}{\rightarrow} A', \) so \(g(A') \) is a summand of \(B \). This split monomorphism and the split inclusion of \(A' \) into \(A \) are coherent, i.e., the diagram

\[
\begin{array}{cccc}
A' & \overset{g}{\rightarrow} & g(A') \\
\text{incl} \uparrow \updownarrow & & \downarrow \uparrow \alpha^{-1} \circ \mu_1 \\
A' \oplus A'' & \overset{\text{proj}}{\rightarrow} & B
\end{array}
\]

commutes both ways. Thus the exact sequence \(0 \rightarrow A' \overset{g}{\rightarrow} g(A') \rightarrow 0 \rightarrow 0 \) is a summand of \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \).

If we let \(R \) be a local PID which is also a \(k \)-algebra, we get some interesting consequences. We let \(f \) and \(g \) be matrices over \(R \), and say that \(X = F_2 \overset{f}{\rightarrow} F_1 \overset{g}{\rightarrow} F_0 \) is a **representation** of the diagram \(A_2 = \cdot \rightarrow \cdot \rightarrow \cdot \) over \(R \), where \(F_2, F_1, \) and \(F_0 \) are free \(R \)-modules (see, e.g., [DR]). If \(f \) and \(g \) are both
t \times t \text{ matrices with nonzero determinant, then the sequence } \varepsilon = 0 \to A \to B \to C \to 0 \text{ is naturally associated with } X, \text{ where } A = \text{coker}(f), \ B = \text{coker}(gf), \text{ and } C = \text{coker}(g), \text{ by the following commutative diagram:}

$$
\begin{array}{ccc}
F_2 & \longrightarrow & F_2 \\
\uparrow f & & \uparrow gf \\
0 & \longrightarrow & F_1 \\
& \downarrow g & \downarrow \\
& F_0 & \longrightarrow & C & \longrightarrow & 0 \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & 0.
\end{array}
$$

Two representations \(X, X' \) are said to be isomorphic if there is a commutative diagram

$$
\begin{array}{ccc}
F_2 & \stackrel{f}{\longrightarrow} & F_1 & \stackrel{g}{\longrightarrow} & F_0 \\
\downarrow \alpha & & \downarrow \beta & & \downarrow \gamma \\
F'_2 & \stackrel{f'}{\longrightarrow} & F'_1 & \stackrel{g'}{\longrightarrow} & F'_0
\end{array}
$$

with \(\alpha, \beta, \text{ and } \gamma \) isomorphisms. It is shown in [C] that representations are isomorphic if and only if the corresponding sequences are isomorphic.

If \(m \) is the maximal ideal of \(R \) and \(f \) is a \(t \times t \) matrix, we let \(\nu(f) \) be the least integer \(n \) such that \(\det(f) \in m^n \) (where \(m^0 \) is the set of units of \(R \)). In this situation Theorem 1 yields the following.

Corollary. Let \(g \) be a fixed \(t \times t \) matrix with nonzero determinant, and let \(\nu(g) = r \). Then for a fixed integer \(n \), there are only finitely many nonisomorphic indecomposable representations \(X = F_2 \stackrel{f}{\longrightarrow} F_1 \stackrel{g}{\longrightarrow} F_0 \) with \(\nu(f) \leq n \).

Proof. If \(0 \to A \to B \to C \to 0 \) is the sequence associated with \(X \), then the length of an indecomposable summand of \(C \) (respectively \(A \)) is bounded by \(r \) (respectively \(n \)); so every such sequence may be considered to be a sequence of \(R/m^s \)-modules, where \(s = \max\{r, n\} \). But \(R/m^s \) is an artin algebra of finite type, so Theorem 1 may be applied.

An application of this corollary, proved in [C], is that if \(\nu(f) < t \), where \(t \) is as above, then \(X \) must decompose.

Acknowledgment

The author would like to thank E. L. Green, who supervised the dissertation in which these results were first obtained.
REFERENCES

DEPARTMENT OF MATHEMATICS, RADFORD UNIVERSITY, RADFORD, VIRGINIA 24142