## $L^ 2$-boundedness of spherical maximal operators with multidimensional parameter sets

HTML articles powered by AMS MathViewer

- by Young-Hwa Ha
- Proc. Amer. Math. Soc.
**105**(1989), 401-411 - DOI: https://doi.org/10.1090/S0002-9939-1989-0955460-X
- PDF | Request permission

## Abstract:

For $s > 0$, let ${M_s}f(x) = \int _{|y| = 1} {f(x - sy)d\sigma (y)}$ be the spherical mean operator on ${R^n}$. For a certain class of surfaces $S$ in $R_ + ^{n + 1}$ with $\dim S = n - 2$ or $\dim S = n - 1$ with an additional condition, the maximal operator \[ \mathcal {M}f(x) = \sup \limits _{(u,s) \in S} |{M_s}f(x - u)|\] is shown to be bounded on ${L^2}({R^n})$. This extends (on ${L^2}({R^n})$) the theorem of Stein [7], where $S = \{ (0,s):s > 0\}$, and its generalizations to $\dim S = 1$ in Greenleaf [2] and Sogge and Stein [6].## References

- R. Courant and D. Hilbert,
- Allan Greenleaf,
*Principal curvature and harmonic analysis*, Indiana Univ. Math. J.**30**(1981), no. 4, 519–537. MR**620265**, DOI 10.1512/iumj.1981.30.30043 - Fritz John,
*Plane waves and spherical means applied to partial differential equations*, Interscience Publishers, New York-London, 1955. MR**0075429** - Alexander Nagel, Elias M. Stein, and Stephen Wainger,
*Hilbert transforms and maximal functions related to variable curves*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 95–98. MR**545242**
R. Paley, - Christopher D. Sogge and Elias M. Stein,
*Averages of functions over hypersurfaces in $\textbf {R}^n$*, Invent. Math.**82**(1985), no. 3, 543–556. MR**811550**, DOI 10.1007/BF01388869 - Elias M. Stein,
*Maximal functions. I. Spherical means*, Proc. Nat. Acad. Sci. U.S.A.**73**(1976), no. 7, 2174–2175. MR**420116**, DOI 10.1073/pnas.73.7.2174 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - Elias M. Stein and Stephen Wainger,
*Problems in harmonic analysis related to curvature*, Bull. Amer. Math. Soc.**84**(1978), no. 6, 1239–1295. MR**508453**, DOI 10.1090/S0002-9904-1978-14554-6 - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR**0304972** - Stephen Wainger,
*Averages and singular integrals over lower-dimensional sets*, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 357–421. MR**864376** - A. Zygmund,
*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

*Methods of mathematical physics*, Interscience, New York, 1962.

*A proof of a theorem on averages*, Proc. London Math. Soc.

**31**(1930), 289-300.

## Bibliographic Information

- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**105**(1989), 401-411 - MSC: Primary 42B25; Secondary 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1989-0955460-X
- MathSciNet review: 955460