ON THE VALUES AT NEGATIVE HALF-INTEGERS
OF THE DEDEKIND ZETA FUNCTION
OF A REAL QUADRATIC FIELD

MINKING EIE

(Communicated by Larry J. Goldstein)

Abstract. The zeta function \(\zeta(A,s) \) associated with a narrow ideal class \(A \)
for a real quadratic field can be decomposed into \(\sum_{Q} Z_{Q}(s) \), where \(Z_{Q}(s) \) is
a Dirichlet series associated with a quadratic form \(Q(x, y) = ax^2 + bxy + cy^2 \),
and the summation is over finite reduced quadratic forms associated to the nar-
row ideal class \(A \). The values of \(Z_{Q}(s) \) at nonpositive integers were obtained
by Zagier [16] and Shintani [12] via different methods. In this paper, we shall
obtain the values of \(Z_{Q}(s) \) at negative half-integers \(s = -1/2, -3/2, \ldots, -m+1/2, \ldots \).
The values of \(Z_{Q}(s) \) at nonpositive integers were also obtained by
our method, and our results are consistent with those given in [16].

1. Introduction

Let \(Q(x, y) = ax^2 + bxy + cy^2 \) be a binary quadratic form with integral
coefficients and of discriminant \(D = b^2 - 4ac \). Also let \(T = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \) be an
element of \(GL_{2}(Z) \) with \(\det T = \alpha\delta - \beta\gamma = \pm 1 \). Then \(T \) acts on the collection
of forms of discriminant \(D \) by the action:

\[Q \rightarrow Q|T(x, y) = (\alpha\delta - \beta\gamma)Q(\alpha x + \beta y, \gamma x + \delta y). \]

Two forms \(Q_1 \) and \(Q_2 \) are said to be equivalent in the narrow sense (resp.
wide sense) if \(Q_1 = Q_2|T \) for some \(T \in SL_{2}(Z) \) (resp. \(T \in GL_{2}(Z) \) and
\(\det T = \pm 1 \)). A quadratic form \(Q(x, y) = ax^2 + bxy + cy^2 \) is called reduced
(in the narrow sense) if \(a > 0, c > 0, \) and \(b > a + c \). \(Q \) is primitive if the
g.c.d. of \(a, b, c \) is 1.

In real quadratic fields, there is a natural correspondence between classes of
modules and \(SL_{2}(Z) \)-equivalent classes of primitive quadratic forms. Let \(M \)
be a full module (module of rank 2) in a real quadratic field. The zeta function

Received by the editors December 16, 1987 and, in revised form, January 26, 1988.
This work was supported by the Institute of Mathematics, Academia Sinica, and the National Science Foundation of Taiwan, Republic of China.
of \(M \) is defined by

\[
\zeta(M, s) = N(M)^s \sum_{\xi \in M/E} \frac{1}{N(\xi)^s}, \quad \text{Re} \, s > 1,
\]

where \(E \) is the group of totally positive units \(\varepsilon \) satisfying \(\varepsilon M = M \), and \(N \) is the norm on the real quadratic field. For any totally positive number \(\lambda \), we have \(\zeta(\lambda M, s) = \zeta(M, s) \). Hence \(\zeta(M, s) \) can be considered as a zeta function associated with the module class \(A \) to which \(M \) belongs. Consequently, we write \(\zeta(A, s) \) instead of \(\zeta(M, s) \).

For a reduced quadratic form \(Q(x, y) = ax^2 + bxy + cy^2 \), we define

\[
Z_Q(s) = \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} \frac{1}{(ap^2 + bpq + cq^2)^s} + \frac{1}{2} \sum_{p=1}^{\infty} \frac{1}{(ap^2)^s} + \frac{1}{2} \sum_{q=1}^{\infty} \frac{1}{(cq^2)^s}, \quad \text{Re} \, s > 1.
\]

In [16], Zagier proved that \(\zeta(A, s) \) can be decomposed into finite combinations of \(Z_Q(s) \), i.e.

\[
\zeta(A, s) = \sum_Q Z_Q(s),
\]

where the summation is over the reduced forms in the classes of forms associated to the module class of \(M \). Also Zagier gave the values of \(Z_Q(s) \) at nonpositive integers.

In this paper, we shall start with the zeta function

\[
\zeta_2(s) = \sum_{s_1=1}^{\infty} \sum_{s_2=1}^{\infty} \sum_{s_{12}=0}^{\infty} \frac{1}{(s_1s_2 + (s_1 + s_2)s_{12})^s}, \quad \text{Re} \, s > 3/2,
\]

associated with the principal Delaunay-Voronoi cone as considered in [3]. Letting \(s_1 = p, \ s_2 = q \), and \(s_{12} = (ap + cq)/(b - a - c) \), we get the zeta function \(Z_Q^*(s) \) up to a constant multiple \((b - a - c)^s \). With the method introduced in [3, 6, 9], we get an integral expression for \(Z_Q^*(s)\Gamma(s)(s - 1/2)\pi^{1/2} \) when \(\text{Re} \, s \geq 3/2 \), and the values of \(Z_Q^*(s) \) at nonpositive integers and negative half-integers can be written as a finite sum of integrals which are functions in \(s \) and have analytic continuations in the whole complex plane.

Theorem 1. Let \(m \) be a nonnegative integer. Then

\[
Z_Q^*(-m) = -\frac{(2m + 1)!}{2^{2m}} (b - a - c)^m \frac{1}{2\pi} N_1(-m),
\]

\[
Z_Q^*(-m + \frac{1}{2}) = -\frac{B_{2m}}{2^{2m}} (b - a - c)^{m-(1/2)} \frac{1}{2\pi} N_2\left(-m + \frac{1}{2}\right), \quad m \geq 1,
\]
where

\[N_1(s) = \int_0^1 (1 - r^2)^{s-3/2} r \, dr \]
\[\cdot \int_0^{2\pi} \prod_{p=0}^{m+1} \frac{B_{2p} B_{2m+2-2p} R(r, \theta)^{2p-1} T(r, \theta)^{2m+1-2p}}{2^{2p}(2m + 2 - 2p)!} \left(+ \frac{1}{4} \text{ if } m = 0 \right) d\theta, \]

\[N_2(s) = \int_0^1 (1 - r^2)^{s-3/2} r \, dr \int_0^{2\pi} [R(r, \theta)^{2m-1} + T(r, \theta)^{2m-1}] d\theta, \]

for \(\text{Res} > 1 \), with

\[R(r, \theta) = (1 + r \sin \theta) + \frac{2a}{b - a - c} (1 - r \cos \theta), \]
\[T(r, \theta) = (1 - r \sin \theta) + \frac{2c}{b - a - c} (1 - r \cos \theta). \]

Here \(B_m \ (m = 0, 1, \ldots) \) are Bernoulli numbers defined by

\[\frac{t}{e^t - 1} = \sum_{m=0}^{\infty} \frac{B_m t^m}{m!}, \quad |t| < 2\pi. \]

Note that \(N_1(s) \) has an analytic continuation which is holomorphic except for possible simple poles at \(s = \frac{1}{2}, -\frac{1}{2}, \ldots, -m + \frac{1}{2} \). On the other hand, \(N_2(s) \) has an analytic continuation which is holomorphic except for possible poles at \(s = \frac{1}{2}, -\frac{1}{2}, \ldots, -m + \frac{3}{2} \) if \(-m + \frac{3}{2} < \text{Res} \leq -m + \frac{1}{2} \). Thus \(N_1(-m) \) and \(N_2(-m + \frac{1}{2}) \) can be obtained by the analytic continuation of \(N_1(s) \) and \(N_2(s) \).

In particular, we have

Theorem 2. For positive integers \(m \), we have

\[\frac{1}{2\pi} N_2 \left(-m + \frac{1}{2} \right) = \sum_{l=0}^{m-1} \binom{2m - 1}{2l} \frac{[1 \cdot 3 \cdot \cdots (2l-1)]}{[m(m-1) \cdots (m-l)](-2)^{l+1}} \cdot \{(1 + \delta_1)^{2m-1-2l}(1 + \delta_1^2)^l + (1 + \delta_2)^{2m-1-2l}(1 + \delta_2^2)^l\} \]

with \(\delta_1 = 2a/(b - a - c) \) and \(\delta_2 = 2c/(b - a - c) \).

Consequently, by an elementary computation, we have the following:

\[Z_Q \left(-\frac{1}{2} \right) = \frac{1}{24} \sqrt{b - a - c} - \frac{1}{24} (\sqrt{a} + \sqrt{c}), \]
\[Z_Q(-1) = \frac{1}{24} \left(\frac{b}{a} + \frac{b}{c} \right) + \frac{1}{4}, \]
\[Z_Q \left(-\frac{3}{2} \right) = \frac{1}{1620} \cdot \frac{P(a, b, c)}{(b - a - c)^{3/2}} + \frac{1}{240} (a^{3/2} + c^{3/2}) \] with
\[P(a, b, c) = 6a^3 - b^2 + 6c^3 - 3a^2b - 3bc^2 \]
\[- 6ab^2 - 6b^2c - 6a^2c - 6ac^2 + 30abc, \]
\[Z_Q(-2) = \frac{1}{1440} \left(\frac{b^3 - 6abc}{a^2} + \frac{b^3 - 6abc}{c^2} \right) + \frac{b}{144}. \]

In particular, we prove the following result:

Theorem. Let \(K \) be a real quadratic field of discriminant \(D \) and denote by \(G_K \) the (finite) set of positive divisors of integers of the form \((D - n^2)/4 \ (|n| < \sqrt{D}, \ n \equiv D \pmod{2}) \). Then the value of the Dedekind zeta function of \(K \), or of the zeta function of any ideal class of \(K \), at a negative half-integral argument \(s = 1/2 - m \) is a rational linear combination of the numbers \(g^{1/2-m} \ (g \in G_K) \), the denominators of the coefficients being bounded by an integer depending only on \(m \) (24 for \(m = 1 \), 1620 for \(m = 2, \ldots \)).

The above theorem is an easy consequence of Theorems 1 and 2 since the numbers \(a, c \), and \(b - a - c \) for any reduced form \(ax^2 + bxy + cy^2 \) belong to \(G_K \).

2. THE INTEGRAL EXPRESSION OF \(Z^*_Q \) AND THE PROOF OF THEOREM 1

Fix a reduced quadratic form \(Q(x, y) = ax^2 + bxy + cy^2 \) and let

\[Z^*_Q(s) = \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} \frac{1}{(ap^2 + bpq + cq^2)^s}, \quad \text{Re} \ s > 1. \]

In this section we shall obtain an integral expression for \(Z^*_Q(s)\Gamma(s)\Gamma(s-1/2)\pi^{1/2} \) and the analytic continuation of this zeta function.

Lemma 1. Let \(Y \) be the variable of a \(2 \times 2 \) real symmetric matrix and \(G \) be a fixed \(2 \times 2 \) positive definite symmetric matrix. Then we have, for \(\text{Re} \ s \geq 3/2 \),

\[\int_{Y>0} (\det Y)^{s-3/2} e^{-\text{tr}(YG)} dY = (\det G)^{-s} \pi^{1/2} \Gamma(s) \Gamma \left(s - \frac{1}{2} \right). \]

Here \(\text{tr} X = \text{trace of } X \) for any matrix \(X \).

Proof. See p. 225 of [1].

Proposition 1. For \(\text{Re} \ s \geq 3/2 \), we have

\[\Gamma(s)\Gamma \left(s - \frac{1}{2} \right) \pi^{1/2} (b - a - c)^s Z^*_Q(s) = \int_{Y>0} (\det Y)^{s-3/2} \frac{dY}{(e^{A(Y)} - 1)(e^{B(Y)} - 1)}, \]

where

\[Y = \begin{bmatrix} y_1 & y_{12} \\ y_{12} & y_2 \end{bmatrix} \quad \text{and} \quad \begin{align*} A(Y) &= y_1 + \frac{a}{b - a - c} (y_1 + y_2 - 2y_{12}), \\ B(Y) &= y_2 + \frac{c}{b - a - c} (y_1 + y_2 - 2y_{12}). \end{align*} \]

Proof. Apply Lemma 1 with

\[G = \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix} + \frac{ap + bq}{b - a - c} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \]

\(p, q \) being positive integers.
we get, for \(\Re s \geq 3/2 \),
\[
\Gamma(s) \Gamma\left(s - \frac{1}{2}\right) \pi^{1/2} Z_Q^*(s) (b - a - c)^s = \sum_{q=1}^{\infty} \sum_{p=1}^{\infty} \int_{Y>0} (\det Y)^{s-3/2} e^{-A(Y)p - B(Y)q} dY
\]
\[
= \int_{Y>0} (\det Y)^{s-3/2} \sum_{q=1}^{\infty} \sum_{p=1}^{\infty} e^{-A(Y)p - B(Y)q} dY
\]
\[
= \int_{Y>0} (\det Y)^{s-3/2} \frac{dY}{(e^{A(Y)} - 1)(e^{B(Y)} - 1)}.
\]

Remark. Here the exchange of summation and integration is possible since the double series \(\sum_{q=1}^{\infty} \sum_{p=1}^{\infty} e^{-A(Y)p - B(Y)q} \) is absolutely convergent and its partial sum is dominated by
\[
\frac{1}{(e^{A(Y)} - 1)(e^{B(Y)} - 1)}.
\]

Proposition 2. \(Z_Q^*(s) \) has an analytic continuation to the whole complex plane except a simple pole at \(s = 1/2 \). Furthermore, we have
\[
Z_Q^*(s) = 2\Gamma(1-s) \frac{e^{-\pi is}}{e^{2\pi is} + 1} \int_{L(\epsilon)} u^{2s-3} I(s, u) du
\]
where
\[
I(s, u) = \frac{1}{\Gamma(s-1/2)\pi^{1/2}} \int_0^1 (1-r^2)^{s-3/2} r dr \int_0^{2\pi} \frac{u^2 d\theta}{(e^{R(r, \theta) u} - 1)(e^{T(r, \theta) u} - 1)},
\]
\(L(\epsilon) \) is the contour in the complex plane consisting of the interval \([\epsilon, + \infty) \) twice, in both directions (in and out) and the circle \(|z| = \epsilon \) in counterclockwise direction, and
\[
\begin{align*}
R(r, \theta) &= (1 + r \sin \theta) + \frac{2a}{b - a - c} (1 - r \cos \theta), \\
T(r, \theta) &= (1 - r \sin \theta) + \frac{2c}{b - a - c} (1 - r \cos \theta).
\end{align*}
\]

Proof. The first assertion was proved in [16]. Here we prove the integral expression from Proposition 1. By changing variables: \(u = (y_1 + y_2)/2 \), \(v = (y_1 - y_2)/2 \), \(w = y_{12} \), the integral expression for \(\Gamma(s)\Gamma(s-1/2)Z_Q^*(s)(b - a - c)^s \) is transformed into
\[
2 \int_{u^2 - v^2 - w^2 > 0, u > 0} (u^2 - v^2 - w^2)^{s-3/2} du dv dw
\]
where \(\delta_1 = 2a/(b - a - c) \) and \(\delta_2 = 2c/(b - a - c) \).

Let \(v = ux \), \(u = vy \) and then let \(x = r \cos \theta \), \(y = r \sin \theta \). It follows that
\[
\Gamma(s)\Gamma(s-1/2)\pi^{1/2} Z_Q^*(s)(b - a - c)^s
\]
\[
= 2 \int_0^\infty u^{2s-3} du \int_0^1 (1-r^2)^{s-3/2} r dr \int_0^{2\pi} \frac{u^2 d\theta}{(e^{R(r, \theta) u} - 1)(e^{T(r, \theta) u} - 1)}.
\]
As shown in [6], $I(s, u)$ has an analytic continuation which is a meromorphic function in s. The integration with respect to u can be changed into a contour integral. Thus we have

$$\Gamma(s)Z^*_Q(s)(b - a - c)^s = 2(e^{4\pi is} - 1)^{-1} \int_{L(e)} u^{2s-3} I(s, u) \, du.$$

In light of the functional equation for the gamma function

$$\Gamma(s)\Gamma(1 - s) = \frac{2\pi i e^{\pi is}}{e^{2\pi is} - 1},$$

we then have

$$Z^*_Q(s)(b - a - c)^s = 2\Gamma(1 - s)\frac{e^{-\pi is}}{e^{2\pi is} + 1} \cdot \frac{1}{2\pi i} \int_{L(e)} u^{2s-3} I(s, u) \, du.$$

The contour integral is convergent for all s. Thus it defines the analytic continuation of $Z^*_Q(s)$.

Proof of Theorem 1. When $s = -m$ or $s = -m + \frac{1}{2}$ ($m > 0$), then $2s - 3$ is an integer. On the other hand, $I(s, u)$ is a holomorphic function in u. Consequently, the integrations along $[e, \infty)$ twice in opposite directions will cancel and the evaluation of the contour integral is reduced to the calculation of residues of $u^{2s-3} I(s, u)$ at $u = 0$ and $s = -m$ or $-m + \frac{1}{2}$.

Note that

$$\frac{u}{e^{R(r, \theta)u} - 1} = \frac{1}{R(r, \theta)} - \frac{1}{2} + \sum_{m=1}^{\infty} \frac{B_{2m}u^{2m} R(r, \theta)^{2m-1}}{(2m)!}, \quad |R(r, \theta)u| < 2\pi,$$

$$\frac{u}{e^{T(r, \theta)u} - 1} = \frac{1}{T(r, \theta)} - \frac{1}{2} + \sum_{m=1}^{\infty} \frac{B_{2m}u^{2m} T(r, \theta)^{2m-1}}{(2m)!}, \quad |T(r, \theta)u| < 2\pi.$$

By considering the coefficients of u^{2m+2} ($s = -m$) and u^{2m+1} ($s = -m + \frac{1}{2}$) in the power expansion of

$$\frac{u^2}{(e^{R(r, \theta)u} - 1)(e^{T(r, \theta)u} - 1)}$$

at $u = 0$, we get our assertion for $Z^*_Q(-m)$ and $Z^*_Q(-m + \frac{1}{2})$ as listed in Theorem 1 of the Introduction.

Remark. Here we use the following identities, which can be verified in an elementary way:

$$\lim_{s \to -m} 2\Gamma(1 - s)\frac{e^{-\pi is}}{e^{2\pi is} + 1} \cdot \frac{1}{\Gamma(s - \frac{1}{2}) \pi^{1/2}} = -\frac{(2m + 1)!}{2^{2m}} \cdot \frac{1}{2\pi},$$

$$\lim_{s \to -m + \frac{1}{2}} 2\Gamma(1 - s)\frac{e^{-\pi is}}{e^{2\pi is} + 1} \cdot \frac{1}{\Gamma(s - \frac{1}{2}) \pi^{1/2}} = -\frac{(2m)!}{2^{2m}\pi}.$$
3. The proof of theorem 2

The evaluation of \(N_1(-m) \) and \(N_2(-m + \frac{1}{2}) \) can be done by the same arguments as in [3]. However, as the values of \(Z_Q(s) \) at nonpositive integers were given in [16], it is unnecessary to compute \(N_1(-m) \) (though it is possible). Here we only compute the value of \(N_2(-m + \frac{1}{2}) \).

Proof of Theorem 2. Note that

\[
1 + r \sin \theta + \delta_1 (1 - r \cos \theta) = 1 + \delta_1 + \sqrt{1 + \delta_1^2 r \sin(\theta - \phi)}
\]

with \(\phi = \tan^{-1}(1/\delta_1) \). Hence

\[
\int_0^{2\pi} R(r, \theta)^{2m-1} d\theta = \int_0^{2\pi} [1 + \delta_1 + \sqrt{1 + \delta_1^2 r \sin(\theta - \phi)}]^{2m-1} d\theta
\]

\[
= \int_0^{2\pi} [1 + \delta_1 + \sqrt{1 + \delta_1^2 r \sin \theta}]^{2m-1} d\theta
\]

\[
= \sum_{l=0}^{m-1} \left(\frac{2m - 1}{2l} \right) (1 + \delta_1)^{2m-1-2l} (1 + \delta_1^2)^l \int_0^{2\pi} r^{2l} \sin^{2l} \theta d\theta.
\]

For sufficiently large \(s \), we have

\[
\int_0^{1} \int_0^{2\pi} (1 - r^2)^{s-3/2} r^{2l+1} \sin^2 \theta d\theta dr = \frac{[1 \cdot 3 \cdots (2l - 1)] 2\pi}{(2s - 1)(2s + 1) \cdots (2s - 1 + 2l)}.
\]

Thus the contribution from \(R(r, \theta)^{2m-1} \) to \((1/2\pi)N_2(-m)\) is given by

\[
\sum_{l=0}^{m-1} \left(\frac{2m - 1}{2l} \right) (1 + \delta_1)^{2m-1-2l} (1 + \delta_1^2)^l \frac{[1 \cdot 3 \cdots (2l - 1)]}{[(-2m)(-2m + 2) \cdots (-2m + 2l)]} \frac{[1 \cdot 3 \cdots (2l - 1)]}{[m(m-1) \cdots (m-l)](-2)^l}.
\]

In the same way, we get the contribution from \(T(r, \theta)^{2m-1} \) to \((1/2\pi)N_2(-m)\).

Corollary. Let \(m \) be a positive integer. Then

\[
Z_Q \left(-m + \frac{1}{2} \right) = -\frac{B_{2m}}{2^{2m}} \sum_{l=0}^{m-1} \left(\frac{2m - 1}{2l} \right) \frac{[1 \cdot 3 \cdots (2l - 1)]}{[m(m-1) \cdots (m-l)](-2)^l} \cdot \{(1 + \delta_1)^{2m-1-2l} (1 + \delta_1^2)^l \cdot (b-a-c)^{m-1/2} - \frac{1}{2} (a^{m-1/2} + c^{m-1/2}) \frac{B_{2m}}{2^{2m}} \}
\]

where \(\delta_1 = 2a/(b-a-c), \delta_2 = 2c/(b-a-c). \)
REFERENCES

3. Minking Eie and Chong-hsio Fang, On the residues and values of a zeta function at negative integers and negative half-integers, manuscript, 1987.
9. I. Satake, Special values of zeta functions associated with self-dual homogeneous cones, manuscript, 1981.

INSTITUTE OF MATHEMATICS, ACADEMIA SINICA, NANKANG, TAIPEI 11529, TAIWAN, REPUBLIC OF CHINA