Extremal Minkowski additive selections of compact convex sets
HTML articles powered by AMS MathViewer
- by Rade T. Živaljević
- Proc. Amer. Math. Soc. 105 (1989), 697-700
- DOI: https://doi.org/10.1090/S0002-9939-1989-0937855-3
- PDF | Request permission
Abstract:
A function $f:{\mathcal {K}^n} \to {R^n}$, defined on the set of all compact convex sets in ${R^n}$, is a Minkowski additive selection, provided $f(K + L) = f(K) + f(L)$ and $f(K) \in K$ for all $K,L \in {\mathcal {K}^n}$. The paper deals with selections which are extremal in some sense, in particular we characterize the set of all Minkowski additive selections which have the property $f(K) \in {\text {ext}}(K)$ for all $K \in {\mathcal {K}^n}$, where ${\text {ext}}(K)$ is the set of all extreme points of $K$.References
- Branko Grünbaum, Measures of symmetry for convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 233–270. MR 0156259
- Peter McMullen and Rolf Schneider, Valuations on convex bodies, Convexity and its applications, Birkhäuser, Basel, 1983, pp. 170–247. MR 731112
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- E. D. Posicel′skiĭ, The characterization of the Steiner point, Mat. Zametki 14 (1973), 243–247 (Russian). MR 326573
- G. T. Sallee, A non-continuous “Steiner point”, Israel J. Math. 10 (1971), 1–5. MR 296814, DOI 10.1007/BF02771514
- Rolf Schneider, On Steiner points of convex bodies, Israel J. Math. 9 (1971), 241–249. MR 278187, DOI 10.1007/BF02771589
- Rolf Schneider, Equivariant endomorphisms of the space of convex bodies, Trans. Amer. Math. Soc. 194 (1974), 53–78. MR 353147, DOI 10.1090/S0002-9947-1974-0353147-1
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 697-700
- MSC: Primary 52A20
- DOI: https://doi.org/10.1090/S0002-9939-1989-0937855-3
- MathSciNet review: 937855