An elementary proof of a theorem of Schaefer, Wolff and Arendt
HTML articles powered by AMS MathViewer
- by C. B. Huijsmans
- Proc. Amer. Math. Soc. 105 (1989), 632-635
- DOI: https://doi.org/10.1090/S0002-9939-1989-0939965-3
- PDF | Request permission
Abstract:
An elementary proof of the following result, due to Schaefer, Wolff, and Arendt is given: if $T$ is a lattice homomorphism on a Banach lattice $E$ with spectrum $\sigma (T) = \{ 1\}$, then $T = I$, the identity mapping on $E$.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- C. B. Huijsmans, Elements with unit spectrum in a Banach lattice algebra, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 1, 43–51. MR 934473 W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces I, North-Holland, Amsterdam, 1971.
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
- Helmut H. Schaefer, Manfred Wolff, and Wolfgang Arendt, On lattice isomorphisms with positive real spectrum and groups of positive operators, Math. Z. 164 (1978), no. 2, 115–123. MR 517148, DOI 10.1007/BF01174818
- Jürgen Voigt, The projection onto the center of operators in a Banach lattice, Math. Z. 199 (1988), no. 1, 115–117. MR 954756, DOI 10.1007/BF01160214
- A. C. Zaanen, Riesz spaces. II, North-Holland Mathematical Library, vol. 30, North-Holland Publishing Co., Amsterdam, 1983. MR 704021
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 632-635
- MSC: Primary 47B55; Secondary 46B30
- DOI: https://doi.org/10.1090/S0002-9939-1989-0939965-3
- MathSciNet review: 939965