Remark on Witten’s modular forms
HTML articles powered by AMS MathViewer
- by Jean-Luc Brylinski
- Proc. Amer. Math. Soc. 105 (1989), 773-775
- DOI: https://doi.org/10.1090/S0002-9939-1989-0942631-1
- PDF | Request permission
Abstract:
We give a simple proof of the modular invariance of a power series which Witten [4] attaches to an even-dimensional closed manifold whose first Pontryagin class is torsion. The proof uses only the functional equation satisfied by classical theta functions.References
- K. Chandrasekharan, Elliptic functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396, DOI 10.1007/978-3-642-52244-4
- Peter S. Landweber, Elliptic cohomology and modular forms, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 55–68. MR 970281, DOI 10.1007/BFb0078038
- A. N. Schellekens and N. P. Warner, Anomalies, characters and strings, Nuclear Phys. B 287 (1987), no. 2, 317–361. MR 885644, DOI 10.1016/0550-3213(87)90108-8
- Edward Witten, The index of the Dirac operator in loop space, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 161–181. MR 970288, DOI 10.1007/BFb0078045
- Edward Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987), no. 4, 525–536. MR 885560, DOI 10.1007/BF01208956
- Don Zagier, Note on the Landweber-Stong elliptic genus, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986) Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 216–224. MR 970290, DOI 10.1007/BFb0078047
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 105 (1989), 773-775
- MSC: Primary 57R20; Secondary 11F11
- DOI: https://doi.org/10.1090/S0002-9939-1989-0942631-1
- MathSciNet review: 942631